Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КТР ОТУ М17.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
293.38 Кб
Скачать

2 Определение передаточных функций разомкнутой и замкнутой системы

Задана функциональная схема потенциометрической следящей системы автоматического управления (САУ), рис.1.

Рис. 1 Функциональная схема следящей системы

В схему входят следующие элементы: КУ- корректирующее устройство, МУ – магнитный усилитель, Д- двигатель постоянного тока, приводящий в движение исполнительный механизм. Математическая модель данной структуры представлена в виде структурной схемы, рис.2. Значения коэффициентов передачи и постоянных времени звеньев приведены в табл.2.

Рис.2. Структурная схема системы

Необходимо:

1. Определить передаточную функцию разомкнутой системы.

2. Найти передаточную функцию замкнутой системы при единичной отрицательной обратной связи.

3. Определить предельное значение коэффициента передачи по условию устойчивости системы. Таблица 2

Параметр

Вариант

0

1

2

3

4

5

6

7

8

9

5,0

1,43

1,5

4,17

6,34

4,44

5,0

2,22

3,33

2,0

2

2,5

3,0

4,0

1,5

2,0

0,8

3,0

6,5

1,5

0,2

0,3

0,4

0,2

0,06

0,07

0,05

0,1

0,1

0,25

3

2,0

1,5

2,0

3,5

3

2,0

0,5

2,5

2,5

1,2

5,0

3,2

2,0

2,0

2,0

3,0

4,0

3,0

2,0

0,5

0,4

0,3

0,3

0,3

0,2

0,15

0,3

0,2

0,5

Параметр

Вариант

10

11

12

13

14

15

16

17

18

19

3,0

1,3

2,5

5, 7

7,1

4,4

6,0

2,4

3,4

8,0

4

3,5

3,6

4,2

1,3

2,1

0,48

3,1

3,5

2,5

0,12

0,23

0,2

0,05

0,09

0,17

0,07

0,15

0,6

0,4

3,7

2,7

1,8

2,5

3,2

3,6

2,2

0,59

3,5

1,5

1,5

5,7

3,7

2,1

2,8

1,9

3,4

4,25

5,6

3,0

0,5

0,3

0,25

0,36

0,3

0,5

0,18

0,32

0,27

4,5

Методические указания

Если на структурной схеме, рис.2, удалить цепь отрицательной обратной связи, то схема станет разомкнутой и приобретёт вид, рис. 3.

Рис.3. Структурная схема разомкнутой САУ

Система состоит из четырех последовательно включённых звеньев. Общая передаточная функция в этом случае определяется как

Wраз(p)=W1(p)W2(p)W3(p)W4(p),

Тогда схема рис.3 может быть представлена в виде рис. 4 а. где К=К1К2К3К4 – общий коэффициент усиления

а) б)

Рис.4. Структурные схемы САУ: а – разомкнутая; б - замкнутая

Если разомкнутую схему рис.4а охватить единичной обратной связью то она примет вид рис. 4б. Её общую передаточную функцию можно определить по формуле

В результате схему рис. 4б можно свернуть и представить в виде рис.5

Рис.5. Структурная схема САУ в свернутом виде

Устойчивость САУ определяется по характеристическому уравнению, полином которого находится в знаменателе передаточной функции замкнутой системы. Воспользуемся критерием устойчивости Гурвица, который формируется следующим образом: система будет устойчивой, если при аi>0 главный определитель Гурвица Δ и все его диагональные миноры Δi будут больше нуля.

Характеристическое уравнение системы

После преобразований получим

Обозначим коэффициенты при p соответственно

Тогда это уравнение будет иметь вид

где

Условие устойчивости системы по критерию Гурвица для уравнения третьего порядка определяется:

Для решаемой задачи это означает

Подставляя в это неравенство коэффициенты аi, получаем: или

Отсюда условие устойчивости

и величина предельного коэффициента передачи

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]