- •Предисловие
- •Глава 1
- •Легочная вентиляция
- •Распределение газов и крови в легких
- •Диффузия
- •Механика дыхания
- •Недостаточность спонтанного дыхания и показания к искусственной вентиляции легких
- •Вентиляционная недостаточность
- •Чрезмерно высокая работа дыхания
- •Функциональные критерии перехода на искусственную вентиляцию легких [по Noehren, 1976]
- •Глава 2 принципиальные основы искусственной вентиляции легких биомеханика и способы искусственной вентиляции легких
- •Нежелательные эффекты искусственной вентиляции легких
- •Рациональные параметры искусственной вентиляции легких
- •Величины функциональных параметров для исследуемых моделей «легочной патологии»
- •Глава 3
- •Струйный (инжекционный) метод искусственной вентиляции легких
- •Высокочастотная искусственная вентиляция легких
- •Вспомогательная искусственная вентиляция легких
- •Глава 4 принципы построения аппаратов ивл: классификация, структурная схема, генераторы вдоха и выдоха, разделительная емкость
- •Классификация аппаратов ивл
- •Структурная схема аппарата ивл
- •Генераторы вдоха
- •Генераторы выдоха
- •Разделительная емкость
- •Глава 5 принципы построения аппаратов ивл: распределительное устройство, переключающий механизм, различные способы переключения фаз дыхательного цикла распределительное устройство
- •Переключение со вдоха на выдох
- •Переключение с выдоха на вдох
- •Глава 6
- •Привод, управление, измерение, сигнализация, привод
- •Пневматический привод
- •Электропривод
- •Комбинированный привод
- •Затраты мощности в аппарате ивл
- •Организация управления аппаратом
- •Организация управления основными параметрами ивл
- •Измерения режима работы
- •Глава 7 автоматизация искусственной вентиляции легких
- •Моделирование процесса искусственной вентиляции легких
- •Моделирование системы дыхания
- •Автоматизация аппаратов ивл без использования биологической информации
- •Глава 8 кондиционирование вдыхаемой газовой смеси
- •Увлажнение и обогрев вдыхаемой смеси газов
- •Внутреннее (реверсивное) увлажнение и обогрев; влаго- и теплообменники
- •Внешнее увлажнение и обогрев
- •Аэрозольное увлажнение. Аэрозольные распылители-увлажнители дыхательных газовых смесей
- •Ультразвуковые распылители
- •Пневматические распылители
- •Увлажнение водяным паром. Увлажнители-испарители дыхательных газовых смесей
- •Испарители с подогревом
- •Испарители с нестабилизированным подогревом
- •Испарители с термостабилизированным подогревом
- •Глава 9 обзор аппаратов ивл
- •Выпускаемые в ссср аппараты с электроприводом
- •Наиболее распространенные в ссср зарубежные аппараты
- •Глава 10 обеззараживание аппаратов ивл
- •Глава 11
- •Некоторые типичные ошибки при использовании аппаратов ивл
- •Список литературы
- •Оглавление
- •Роберт Иванович Бурлаков,
- •Юрий Шмулевич Гальперин,
- •Владимир Маркович Юревич
- •Искусственная вентиляция легких
Глава 7 автоматизация искусственной вентиляции легких
Для исследования биологических объектов и создания аппаратов для управления их функциями может быть использована теория автоматического управления. При создании аппаратов ИВЛ и исследовании процесса ИВЛ теория автоматического управления применяется для моделирования процесса ИВЛ с целью его изучения и получения моделей, пригодных для построения систем автоматического управления ИВЛ, в том числе с использованием биологических параметров, в определенной мере заменяющих естественные контуры регулирования дыхания, систем автоматического управления, стабилизирующих работу аппаратов ИВЛ без применения информации о биологических характеристиках пациента.
Применению теории управления в биологических системах посвящено большое количество работ, наиболее доступной из которых для специалиста-медика является монография «Теория регулирования и биологические системы» [Гродинз Ф.С., 1966].
Моделирование процесса искусственной вентиляции легких
Моделирование какого-либо объекта обычно заключается в количественном описании процессов, протекающих в этом объекте, с той или иной степенью приближения к реальности, создании структурной схемы моделируемого объекта и практической реализации таких структурных схем для создания возможных вариантов протекания изучаемых процессов при различных состояниях объекта и влияющих на объект внешних факторов.
Прежде всего необходимо с учетом цели моделирования выделить и охарактеризовать объект, подлежащий представлению в виде модели. Как показано в главе 1, сущность дыхания заключается в том, что оно снабжает ткани кислородом и выводит из них углекислый газ; эти процессы координированы между собой и тесно связаны с другими физиологическими процессами организма. На всем пути газообмена между внешней средой и тканями организма в настоящее время наиболее доступна именно искусственная вентиляция легких.
С количественной стороны процесс самостоятельной и искусственной вентиляции характеризуют частотой дыхания f, дыхательным объемом Vt и минутной вентиляцией Vмин, связанными между собой отношением:
Vмин == V•f
Поскольку газообмен происходит только в альвеолах, важна величина не общей, а альвеолярной вентиляции Va, которая зависит от частоты дыхания f дыхательного объема Vt и величины мертвого пространства Vd:
VA == (VT-VD)•f
Как уже упоминалось, одно и то же значение альвеолярной вентиляции можно получить при различных сочетаниях частоты дыхания и дыхательного объема. При самостоятельном дыхании механизм его регуляции способен выявить неадекватность альвеолярной вентиляции и отрегулировать ее путем изменения частоты дыхания и дыхательного объема. При этом показано [Теннеибаум Л.А., 1966; Rentsch H.Р., 1966], что из множества возможных сочетаний значений f и Vt организм выбирает те, которые, поддерживая нормальные параметры газообмена, делают это с минимальной работой дыхания. В самом общем виде деятельность механизма регуляции дыхания зависит от артериального РCO2 РO2 и рН. Подъем артериального РCO2, падение артериального РO2 и снижение рН ведут к увеличению альвеолярной вентиляции. Обратные изменения PCO2 и рН ведут к уменьшению альвеолярной вентиляции. Увеличение же РO2 не всегда приводит к уменьшению альвеолярной вентиляции. Связь между этими показателями и альвеолярной вентиляцией приведена для «среднего» пациента в работе Комро Дж. Г. и др. [1961] (см. рис. 22).
Исследования [Ivanov, Nunn, 1968] показали, что чувствительность дыхательного центра отличается разнообразием. При моделировании объекта управления иногда стремятся построить систему управления ИВЛ аналогично системе регулирования естественного процесса дыхания. Однако структура такой системы настолько сложна, что ее реализация по техническим и экономическим соображениям существенно затруднена.
Одним из вариантов управления ИВЛ может быть поддержание адекватного газообмена в тканях. Однако решение такой задачи в настоящее время невозможно из-за отсутствия методов измерения тканевого газообмена и методов осреднения информации о газообмене в тканях. Кроме того, обеспечение достаточного тканевого газообмена в ряде случаев зависит не только от ИВЛ.
22. Связь между альвеолярной вентиляцией va и альвеолярными РО2 РСО2 , артериальным насыщением О2.
Попытки использовать систему естественной регуляции дыхания для управления ИВЛ известны и базируются на предположении, что эта система при ИВЛ не нарушена. В одной из таких систем используется активность диафрагмального нерва. Однако для медицинской практики такая методика слишком «инвазивна». В аппаратах, снабженных так называемыми триггерными устройствами для вспомогательного дыхания, для управления ИВЛ используются слабые попытки вдоха пациента. Однако эффективность такого управления для обеспечения оптимального газообмена сомнительна.
Физиологическими константами, отражающими адекватность дыхания, являются РО2, РСО2 и рН артериальной крови. Если говорить об этих константах применительно к ИВЛ, то по причинам, изложенным в главе 1, напряжение кислорода в артериальной крови нужно исключить из параметров, по которым следует вести управление ИВЛ. Из-за наличия в организме буферной системы ВНСО2 — Н2СО3 рН артериальной крови также можно исключить из управляющих параметров. Таким образом, наиболее целесообразно управление ИВЛ осуществлять по РСО2 артериальной крови.
Возможности постановки такой задачи были показаны при исследовании регуляции дыхания в работах Gray (1945), где статическая характеристика системы управления самостоятельным дыханием на основании эмпирических данных приведена в виде:
Va=1,1 [pH]+l,31 [Pco2] 90+l0.6-l0-8[104-Pco2].
Там же предлагается использовать для определения рН выражение, связывающее его с величиной Рсо2:
РН=а[Рco2 — b],
где а и b — параметры, зависящие от содержания бикарбоната в крови и от кислородной емкости крови. С учетом последнего выражения ясно, что в системе спонтанного дыхания альвеолярная вентиляция определяется в основном напряжением углекислого газа в артериальной крови.
Постоянство Рсо2 артериальной крови при ИВЛ создаст в организме лучшие условия для насыщения крови кислородом, стабилизируя положение кривой диссоциации оксигемоглобина; поддерживает благодаря буферной системе нормальный рН; вместе с тем из перечисленных задач управления реализация такой системы представляется наиболее простой.
Для этой задачи управляемой величиной объекта управления является Рсо2 артериальной крови, а управляющим воздействием — минутная вентиляция.