- •Laboratory work №1
- •Computer performance: speed, efficiency, energy costs
- •Amdahl's Law
- •Cpu time
- •Full answer
- •Cpu Time Definition - What does cpu Time mean?
- •Techopedia explains cpu Time
- •Amdahl's Law
- •Speedup:
- •Amdahl's Law Defined
- •A Calculation Example
- •Amdahl's Law Illustrated
- •Optimizing Algorithms
- •Optimizing the Sequential Part
- •Execution Time vs. Speedup
- •Measure, Don't Just Calculate
- •2.1 Architecture of computer
- •2.2 Types of memory
- •2.3 Number system
- •Memory unit.
- •Input - Output
- •Adding Binary Numbers
- •Subtracting Binary Numbers
- •Multiplying Binary Numbers
- •Dividing Binary Numbers
- •4.1 Main functions, structure and types of operating system
- •4.2 Windows os
- •4.3 Working with files and directories
- •Windows system key combinations
- •Windows program key combinations
- •1. Beginning work in word processor
- •2. Creating and editing simple text documents
- •3. Work with formula editor Equation 3.0
- •Exercise 8 - Selecting and Formatting Multiple Lines
- •Exercise 9 - Formatting Last Two Lines
- •Exercise 10 - Formatting Words using the Font Dialog box
- •Symbols
- •Structures
- •10.1. The definition and structure of database
- •10.2. Creation of a new database
- •10.3. Methods of creation new table
- •Control questions
- •6.1 The main tools for work in Power Point
- •6.2 Presentations in ms Office Power Point
- •7.1. Electronic spreadsheet ms Excel
- •7.2. Entering Excel Formulas and Formatting Data
- •7.3 Cell Addressing
- •Worksheets
- •The Formula Bar
- •Entering Excel Formulas and Formatting Data
- •Copy, Cut, Paste, and Cell Addressing
- •Exercise 2
- •Absolute Cell Addressing
- •Mixed Cell Addressing
- •What is Absolute Cell Addressing ?
- •What is Mixed Cell Addressing?
- •Using Reference Operators
- •Understanding Functions
- •Alternate Method: Enter a Function with the Ribbon
- •Fill Cells Automatically
- •Exercise 2
- •Exercise 3
- •Exercise 4
- •Chart example :
- •Exercise 10 Create a Column Chart
- •Apply a Chart Layout
- •Global and local networks. Internet
- •Bases of html
- •The internet
- •Examples of a web page
- •Html Tags
- •The start tag is often called the opening tag. The end tag is often called the closing tag. Web Browsers.
- •Example Explained
- •10.1 Software and hardware for generating key information. 10.2 Protecting programs from unauthorized use via usb-key and the software manufacturer.
- •2. Brief theoretical information
- •Information for the developer.
- •3. The order of execution of work
- •4. Contents of the report
- •5. Test Questions
- •Installation Certification Center.
- •III) Request a certificate. Processing request.
- •3. The order of execution of work
- •4. Contents of the report
- •Test Questions
- •1. Objective
- •3.The order of execution of work
- •Image 1
- •Creating a strong password→
- •Verify your account via sms or Voice Call→
- •Control what others see about you across Google services→
- •Choose the information you share with others
- •More details about your name & photo
- •Preview how your information shows up
- •Preview how your information shows up
- •About Google Accounts→
- •Common issues
- •Product-specific age requirements
- •Disabled account due to incorrect birth date
- •History
- •Technical details
- •Network structure
- •Base station subsystem[edit]
- •Gsm carrier frequencies
- •Voice codecs
- •Subscriber Identity Module (sim)[edit]
- •Phone locking[edit]
- •Gsm security[edit]
- •Standards information[edit]
- •Gsm open-source software[edit]
- •Issues with patents and open source[edit]
- •13.1 Obtaining the electronic services on the portal of e-government of kazakhstan
- •Laboratory work №14
- •Information culture.Internet culture.
Voice codecs
GSM has used a variety of voice codecs to squeeze 3.1 kHz audio into between 6.5 and 13 kbit/s. Originally, two codecs, named after the types of data channel they were allocated, were used, called Half Rate (6.5 kbit/s) and Full Rate (13 kbit/s). These used a system based on linear predictive coding (LPC). In addition to being efficient with bitrates, these codecs also made it easier to identify more important parts of the audio, allowing the air interface layer to prioritize and better protect these parts of the signal.
As GSM was further enhanced in 1997[16] with the Enhanced Full Rate (EFR) codec, a 12.2 kbit/s codec that uses a full-rate channel. Finally, with the development of UMTS, EFR was refactored into a variable-rate codec called AMR-Narrowband, which is high quality and robust against interference when used on full-rate channels, or less robust but still relatively high quality when used in good radio conditions on half-rate channel.
Subscriber Identity Module (sim)[edit]
Main article: Subscriber Identity Module
One of the key features of GSM is the Subscriber Identity Module, commonly known as a SIM card. The SIM is a detachable smart card containing the user's subscription information and phone book. This allows the user to retain his or her information after switching handsets. Alternatively, the user can also change operators while retaining the handset simply by changing the SIM. Some operators will block this by allowing the phone to use only a single SIM, or only a SIM issued by them; this practice is known as SIM locking.
Phone locking[edit]
Main article: SIM lock
Sometimes mobile network operators restrict handsets that they sell for use with their own network. This is called locking and is implemented by a software feature of the phone. A subscriber may usually contact the provider to remove the lock for a fee, utilize private services to remove the lock, or use software and websites to unlock the handset themselves. It is possible to illegally hack past a phone locked by a network operator.
In some countries (e.g., Bangladesh, Belgium, Brazil, Chile, Germany, Hong Kong, India, Iran, Lebanon, Malaysia, Nepal, Pakistan, Poland, Singapore, South Africa, Thailand) all phones are sold unlocked.[17]
Gsm security[edit]
GSM was intended to be a secure wireless system. It has considered the user authentication using a pre-shared key and challenge-response, and over-the-air encryption. However, GSM is vulnerable to different types of attack, each of them aimed at a different part of the network.[18]
The development of UMTS introduces an optional Universal Subscriber Identity Module (USIM), that uses a longer authentication key to give greater security, as well as mutually authenticating the network and the user, whereas GSM only authenticates the user to the network (and not vice versa). The security model therefore offers confidentiality and authentication, but limited authorization capabilities, and no non-repudiation.
GSM uses several cryptographic algorithms for security. The A5/1, A5/2, and A5/3 stream ciphers are used for ensuring over-the-air voice privacy. A5/1 was developed first and is a stronger algorithm used within Europe and the United States; A5/2 is weaker and used in other countries. Serious weaknesses have been found in both algorithms: it is possible to break A5/2 in real-time with a ciphertext-only attack, and in January 2007, The Hacker's Choice started the A5/1 cracking project with plans to use FPGAs that allow A5/1 to be broken with a rainbow table attack.[19] The system supports multiple algorithms so operators may replace that cipher with a stronger one.
Since 2000, different efforts have been done in order to crack the A5 encryption algorithms. Both A5/1 and A5/2 algorithms are broken, and their cryptanalysis has been considered in the literature. As an example, Karsten Nohl (de) developed a number of rainbow tables (static values which reduce the time needed to carry out an attack) and have found new sources for known plaintext attacks.[20] He said that it is possible to build "a full GSM interceptor...from open-source components" but that they had not done so because of legal concerns.[21]Nohl claimed that he was able to intercept voice and text conversations by impersonating another user to listen to voicemail, make calls, or send text messages using a seven-year-oldMotorola cellphone and decryption software available for free online.[22]
New attacks have been observed that take advantage of poor security implementations, architecture, and development for smartphone applications. Some wiretapping and eavesdropping techniques hijack the audio input and output providing an opportunity for a third party to listen in to the conversation.[23]
GSM uses General Packet Radio Service (GPRS) for data transmissions like browsing the web. The most commonly deployed GPRS ciphers were publicly broken in 2011.[24]
The researchers revealed flaws in the commonly used GEA/1 and GEA/2 ciphers and published the open-source "gprsdecode" software for sniffing GPRS networks. They also noted that some carriers do not encrypt the data (i.e., using GEA/0) in order to detect the use of traffic or protocols they do not like (e.g., Skype), leaving customers unprotected. GEA/3 seems to remain relatively hard to break and is said to be in use on some more modern networks. If used with USIM to prevent connections to fake base stations and downgrade attacks, users will be protected in the medium term, though migration to 128-bit GEA/4 is still recommended.
