Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Itogovaya_botva_po_eltekhu.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
12.61 Mб
Скачать

Метод численного интегрирования

    Система дифференциальных уравнений, которыми описывается состояние любой электрической цепи, может быть решена методом численного интегрирования на ЭВМ (метод последовательных интервалов или метод Эйлера).

    Сущность метода состоит в том, что исследуемый промежуток времени Т (при расчете переходных процессов, это Тп - продолжительность переходного процесса) разбивается на большое число N элементарных отрезков времени Δt=T/N=h, которые называются шагом интегрирования.

    В дифференциальных уравнениях дифференциалы функций заменяются их конечными приращениями, а производные функций - отношениями приращений:

    На каждом шаге интегрирования решается система дифференциальных уравнений, в результате решения определяются численные значения производных и самих функций. В качестве исходных данных для их определения используются значения этих же функций на предыдущем шаге, а на начальном 1-ом шаге – их значения в момент коммутации при t =0 , т.е. начальные условия. В результате расчета для функций и их производных составляются массивы их значений в исследуемом интервале времени Т, которые после завершения цикла подвергаются соответствующей математической обработке, а именно: строятся графические диаграммы функций, составляются необходимые таблицы, исследуются функции на наличие максимумов и минимумов, устанавливается продолжительность переходного процесса и его характер, и т.д.

    Пример. Рассчитать переходный процесс в схеме рис. 73.1 с заданными параметрами элементов: e(t)=Emsin(ωt+α), R1, R2, R3, L1, L2, С.

    Путем расчета схемы в установившемся режиме до коммутации определяются независимые начальные условия i1(0), i2(0), uC(0).

    По законам Кирхгофа для схемы после коммутации составляется система дифференциальных уравнений:

    Выбирается шаг интегрирования h (например, из расчета N=1000 шагов на период Т=0,02 с переменного тока, тогда h=Т/ N =2•10^(-5) с).

    Составляется алгоритм вычислений для произвольного к-го шага:

    Далее следуют вычисления по тому же алгоритму для (к+1)-го шага и т. д.

    В соответствии с составленным алгоритмом на любом языке составляется программа вычислений на ЭВМ, что представляет собой несложную инженерную задачу.

    В настоящее время метод численного интегрирования является наиболее универсальным и наиболее простым методом расчета переходных процессов в электрических цепях. Достоинствами метода являются:

    1. Метод численного интегрирования одинаково просто может применяться для расчета переходных процессов в электрических цепях любой сложности, содержащих любое число независимых накопителей энергии L и C. В то же время в классическом и операторном методах с увеличением числа независимых накопителей энергии (и соответственно порядка дифференциального уравнения) значительно возрастают математические сложности, что практически не позволяет применять эти методы для решения дифференциальных уравнений выше 2-го порядка.

    2. Метод численного интегрирования позволяет сравнительно просто выполнить математический анализ решения для искомой функции и получить выводы, необходимые для инженерной практики, а именно: определить характер и продолжительность переходного процесса, определить максимальные значения функции и т.д.

    К недостаткам метода следует отнести необходимость составления индивидуальной расчетной программы для каждой конкретной задачи и решение ее на ЭВМ, что сегодня уже посильно каждому инженеру.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]