- •Вопросы для самопроверки
- •Глава XXVIII круговая диаграмма асинхронной машины
- •§ 1. Обоснование построения круговой диаграммы
- •§ 2. Построение круговой диаграммы
- •§ 3. Определение параметров двигателя из круговой диаграммы
- •§ 4. Построение рабочих характеристик по круговой диаграмме
- •Вопросы для самопроверки
- •Глава XXIX асинхронный генератор
- •§ 1. Асинхронный генератор с возбуждением от сети
- •§ 2. Асинхронный генератор с конденсаторным возбуждением
- •Вопросы для самопроверки
- •§ 5. Лабораторная работа
- •Глава XXX
- •Пуск в ход и регулирование скорости трехфазных асинхронных двигателей
- •§ 1. Прямой пуск в ход трехфазных асинхронных короткозамкнутых двигателей
- •§ 2. Пуск в ход короткозамкнутых двигателей при пониженном напряжении сети
- •§ 3. Пуск в ход асинхронных двигателей с фазным ротором
- •§ 4. Регулирование скорости асинхронных двигателей
- •§ 5. Изменение направления вращения и торможение асинхронных двигателей
- •§ 6, Лабораторная работа
- •Глава XXXI асинхронные короткозамкнутые двигатели с улучшенными пусковыми свойствами
- •§ 1. Двигатель с двойной беличьей клеткой
- •§ 2. Двигатель с глубоким пазом
- •Глава XXXII
- •§ 1. Трехфазный индукционный регулятор
- •§ 2. Однофазный индукционный регулятор
- •§ 3. Фазорегулятор
- •§ 4. Лабораторная работа
- •Глава хххш однофазные асинхронные двигатели
- •§ 1. Принцип действия однофазного асинхронного двигателя
- •§ 3. Однофазный двигатель с расщепленными полюсами
- •§ 4. Типы однофазных двигателей, выпускаемых в ссср
- •Глава XXXIV однофазные коллекторные двигатели последовательного возбуждения
- •§ 1. Принцип действия однофазного коллекторного двигателя
- •§ 2. Векторная диаграмма однофазного коллекторного двигателя
- •§ 3. Универсальные коллекторные двигатели
- •§ 4. Пуск в ход и регулирование скорости коллекторных двигателей
- •§ 5. Лабораторная работа
- •Глава XXXV двигатель-генератор и одноякорный преобразователь
- •§ 1. Двигатель-генератор
- •§ 2. Одноякорный преобразователь
- •Вопросы для самопроверки
- •Глава XXXVI
- •Вращающиеся преобразователи частоты
- •§ 1. Преобразовательные агрегаты частоты типа псч-5
- •§ 2. Асинхронный преобразователь частоты тока типа и-75
- •Вопросы для самопроверки
- •Раздел шестой основы электропривода
- •Глава XXXVII
- •§ 1. Основные понятия и определения
- •§ 2. Классификация электроприводов
- •Глава XXXVIII
- •§ 1. Механические характеристики производственных механизмов и электродвигателей
- •§ 2. Механические характеристики электродвигателя постоянного тока параллельного возбуждения
- •3. Механические характеристики электродвигателей последовательного возбуждения
- •14 К. Потоцкий
- •Вопросы для самопроверки
- •§ 7. Лабораторная работа
- •Глава XXXIX
- •§ I. Уравнение движения электропривода
- •§ 2. Приведение моментов сопротивления и моментов инерции приводов
- •§ 3. Определение времени разбега и торможения электропривода
- •Вопросы для самопроверки
- •Напишите и объясните уравнение движения электропривода
- •Что такое маховой момент?
- •4. Как делают приведение маховых моментов электропривода? 5 Как определяют время разбега электропривода?
- •Глава xl нагрев и охлаждение электрических машин, выбор мощности электродвигателей по нагреву
- •§ 1. Нагрев п охлаждение электрических машин и трансформаторов при работе
- •§ 2. Предельные температуры перегрева частей электрических машин и трансформаторов
- •§ 3. Режимы работы и выбор мощности электродвигателей по нагреву
- •Вопросы для самопроверки
- •§ 4. Лабораторная работа
- •Глава xli
- •§ 1. Выбор электродвигателя и проверка его мощности по характеру нагрузки
- •§ 2. Выбор электродвигателя по роду тока и напряжению
- •§ 3. Выбор электродвигателя с учетом влияния маломощных источников энергоснабжения
- •§ 4. Выбор скорости вращения электродвигателя и передаточного отношения
- •§ 5. Выбор электродвигателя по конструктивным особенностям и условиям окружающей среды
- •Глава xlii
- •Причины низкого коэффициента мощности в электроустановках
- •§ 2. Способы улучшения коэффициента мощности
- •Вопросы для самопроверки
- •Раздел седьмой основные неполадки в работе электрических машин
- •Глава xliii
- •§ 1.. Основные причины перегрева электрических машин и трансформаторов
- •§ 2. Основные причины вибрации электрических машин
- •Глава xliv
- •§ 1. Основные причины неполадок в работе генераторов постоянного тока
- •§ 2. Основные причины неполадок в работе двигателей постоянного тока
- •Глава xlv
- •§ 1. Основные причины неполадок в работе трансформаторов
- •§ 2. Основные причины неполадок в работе синхронных машин
- •§ 3. Основные причины неполадок в работе асинхронных двигателей
- •§ 4. Работа асинхронных двигателей при ненормальном режиме
- •Вопросы для самопроверки
- •§ 5. Лабораторная работа Выявление неисправностей электрических машин
- •Литература
- •Глава IV. Реакция якоря 42
- •§ 1. Магнитное поле обмотки якоря при нагрузке ... 42
- •§ 2. Влияние реакции якоря на работу машины постоянного тока 44
- •Глава V. Коммутация 47
- •§ 1. Сущность процесса коммутации 47
- •§ 2. Способы улучшения коммутации 51
- •Глава VI. Генераторы постоянного тока и их характеристики 55
- •§ 1. Системы возбуждения генераторов 55
- •§ 2. Номинальные величины электрических машин ... 56
- •§ 3. Генератор независимого возбуждения и его характеристики 56
- •§ 4. Генератор параллельного возбуждения и его характеристики 64
- •§ 5. Генератор последовательного возбуждения и его
- •§ 6. Генератор смешанного возбуждения и его характеристики 68
- •§ 7. Лабораторная работа. Исследование генератора
- •Глава VII. Параллельная работа генераторов постоянного
- •§ 1. Условия включения генераторов на параллельную
- •§ 2. Параллельная работа генераторов параллельного
- •§ 3. Параллельная работа генераторов смешанного возбуждения 83
- •§ 1. Принцип действия 84
- •§ 2. Уравнение равновесия моментов 85
- •§ 3. Уравнение равновесия э. Д. С 88
- •§ 4. Двигатель параллельного возбуждения 91
- •§ 5. Двигатель последовательного возбуждения 94
- •§ 6. Двигатель смешанного возбуждения 96
- •§ 7. Лабораторная работа. Исследование двигателей постоянного тока 98
- •§ 1. Классификация потерь в электрических машинах 101
- •§ 2. Постоянные потери 101
- •§ 3. Переменные потери 103
- •§ 4. Добавочные потери 104
- •§ 5. Коэффициент полезного действия машины постоянного тока 104
- •Глава X. Специальные машины постоянного тока . . . 108
- •§ 1. Сварочные генераторы постоянного тока 108
- •§ 2. Сварочный генератор с расщепленными полюсами . . 109
- •§ 3. Сварочный генератор с поперечным магнитным
- •Глава XI. Назначение трансформаторов и принцип их
- •§ 1. Назначение трансформаторов и основные определения 116
- •§ 2. Принцип действия трансформатора 118
- •Глава XII. Теория однофазного трансформатора .... 120
- •§ 1. Режим холостого хода 120
- •§ 2. Работа трансформатора при нагрузке 126
- •§ 3. Режим короткого замыкания трансформатора . . . 135
- •§ 4. Изменение вторичного напряжения трансформатора 139
- •§ 5. Коэффициент полезного действия трансформатора . . 143
- •Глава XIII. Основные элементы конструкции трансформаторов 146
- •§ 1. Устройство трансформатора 146
- •§ 3. Обмотки трансформатора 152
- •§ 4. Бак трансформатора 154
- •§ 5. Вводы 156
- •§ 6. Переключатели 157
- •§ 7. Вспомогательная аппаратура для обслуживания и
- •§ 8. Новые типы трансформаторов серии тсм и tgma 163
- •Глава XIV. Трехфазные трансформаторы и работа их под
- •§ 1. Схемы и группы соединений обмоток трехфазных
- •§ 2. Векторные диаграммы напряжений трехфазных трансформаторов при симметричной и несимметричной
- •§ 3. Регулирование напряжения 177
- •§ 4. Регулирование напряжения под нагрузкой 180
- •§ 5. Лабораторная работа. Исследование трансформаторов 182
- •Глава XV. Параллельная работа трансформаторов . . . 193
- •§ 1. Условия включения трансформаторов на параллельную работу 193
- •§ 2. Явления в трансформаторах при неравенстве коэффициентов трансформации 195
- •§ 3. Явления в трансформаторах при неодинаковых напряжениях короткого замыкания 196
- •§ 4. Явления в трансформаторах, принадлежащих к разным группам соединения обмоток 198
- •§ 5. Лабораторная работа. Параллельная работа тр%х-
- •Глава XVI. Специальные типы трансформаторов .... 202
- •§ 1. Автотрансформаторы 202
- •§ 2. Трансформаторы для регулирования напряжения 207
- •§ 3. Сварочные трансформаторы 209
- •§ 4. Трехобмоточпые трансформаторы 213
- •§ 5. Измерительные трансформаторы 214
- •Глава XVII. Принцип действия и устройство синхронных
- •§ 1. Припцип действия синхронного генератора 217
- •§ 2. Устройство синхронных генераторов 218
- •Глава XVIII. Обмотки машин переменного тока . . . 222
- •§ 1. Основные элементы и определения в обмотках . . 222
- •§ 2. Э. Д. С. Витка обмотки статора синхронного генератора 224
- •§ 3. Однофазные однослойные обмотки 225
- •§ 4. Трехфазные обмотки статора 229
- •§ 5. Магнитное поле, создаваемое обмотками 234
- •Глава XIX. Схемы синхронных генераторов 236
- •§ 1. Синхронный генератор с машинным возбудителем 236 § 2. Синхронный генератор с возбуждением от твердых
- •§ 3. Синхронный генератор с возбуждением от механического выпрямителя 239
- •Глава XX. Реакция якоря 244
- •§ 1. Реакция якоря при активной нагрузке 244
- •§ 2. Реакция якоря при индуктивной нагрузке 245
- •§ 3. Реакция якоря при емкостной нагрузке 246
- •§ 4. Влияние реакции якоря на работу синхронного
- •Глава XXI. Векторные диаграммы синхронного генератора 249
- •§ 1. Уравнение э. Д. С. И индуктивные сопротивления
- •§ 2. Векторная диаграмма для синхронного генератора .
- •§ 3. Векторная диаграмма для синхронного генератора
- •§ 4. Векторная диаграмма для синхронного генератора
- •§ 5. Практическая диаграмма э. Д. С 256
- •§ 6. Отношение короткого замыкания 260
- •Глава XXII. Внешние и регулировочные характеристики
- •§ 1. Внешние характеристики синхроппого генератора 265 § 2. Регулировочные характеристики синхроппого гене-
- •§ 3. Лабораторная работа. Исследование синхронного генератора 267
- •Глава XXIII. Параллельная работа синхронных генераторов 272
- •§ 1. Условия включения на параллельную работу сип-
- •§ 2. Способы включения синхронных генераторов на параллельную работу 275
- •§ 3. Параллельная работа синхронных генераторов на
- •§ 4. Колебания при параллельной работе синхронных машин 283
- •§ 5. Лабораторная работа. Включение синхронных генераторов на параллельную работу 285
- •Глава XXIV. Синхронные двигатели и компенсаторы 289
- •§ 1. Принцип действия синхронного двигателя 289
- •§ 2. Рабочие характеристики синхронного двигателя . . . 291
- •§ 3. Пуск синхронных двигателей 292
- •§ 4. Синхронный компенсатор 296
- •§ 6. Реактивный синхронный двигатель 301
- •Глава XXV. Принцин действия и устройство асинхронных
- •§ 1. Принцип действия асинхронного двигателя .... 305
- •§ 2. Устройство асинхронных двигателей 307
- •Глава XXVI. Рабочий процесс трехфазного асинхронного
- •§ 1. Асинхронный двигатель при неподвижном роторе 312 § 2. Работа асинхронного двигателя при вращении ротора 314
- •§ 3. Векторная диаграмма и схемы замещения асинхрон
- •Глава XXVII. Вращающий момент асинхронного двигателя 321
- •§ 1. Энергетическая диаграмма асинхронного двигателя 321
- •§ 2. Уравнение вращающего момента асинхронного двигателя 324
- •§ 1. Обоснование построения круговой диаграммы . . . 333
- •§ 2. Построение круговой диаграммы 334
- •§ 3. Определение параметров двигателя из круговой
- •§ 4. Построение рабочих характеристик по круговой
- •Глава XXIX. Асинхронный генератор 341
- •§ 1. Асинхронный генератор с возбуждением от сети . . 341
- •§ 3. Лабораторная работа. Исследование асинхронных
- •Глава XXX. Пуск в ход и регулирование скорости трехфазных асинхронных двигателей 349
- •§ 1. Прямой пуск в ход трехфазных асинхронных коротко-
- •§ 2. Пуск в ход короткозамкнутых двигателей при пониженном напряжении сети 350
- •§ 3. Пуск в ход асинхронных двигателей с фазным ротором 353 § 4. Регулирование скорости асинхронных двигателей . 355
- •§ 5. Изменение направления вращения и торможение
- •§ 6. Лабораторная работа. Исследование асинхронных
- •Глава XXXI. Асинхронные короткозамкнутые двигатели
- •§ 1. Двигатель с двойной беличьей клеткой 366
- •§ 2. Двигатель с глубоким пазом 368
- •Глава XXXII. Индукционные регуляторы и фазорегуляторы 370
- •§ 1. Трехфазный индукционный регулятор 370
- •§ 2. Однофазный индукционный регулятор 372
- •§ 3. Фазорегулятор 373
- •§ 4. Лабораторная работа. Исследование индукционного
- •Глава XXXIII. Однофазные асинхронные двигатели . . 375
- •§ 1. Принцип действия однофазного асинхронного двигателя 370
- •§ 2. Использование трехфазных двигателей в качестве
- •§ 3. Однофазный двигатель с расщепленными полюсами 380
- •§ 4. Типы однофазных двигателей, выпускаемых в ссср 381
- •Глава XXXIV. Однофазные коллекторные двигатели последовательного возбуждения 382
- •§ 1. Принцип действия однофазного коллекторного двигателя 382
- •§ 2. Векторная диаграмма однофазного коллекторного
- •§ 3. Универсальные коллекторные двигатели 385
- •§ 4. Пуск в ход и регулирование скорости коллекторных
- •§ 5. Лабораторная работа. Изучение устройства и
- •Глава XXXV. Двигатель-генератор и одноякорный преобразователь 391
- •§ 1. Двигатель-генератор 391
- •§ 2. Одноякорный преобразователь 392
- •§ 1. Преобразовательные агрегаты частоты типа псч-5 397
- •§ 2. Асинхронный преобразователь частоты тока типа
- •Глава XXXVII. Системы электроприводов и их общая
- •Глава XXXVIII. Механические характеристики электродвигателей, применяемых в сельском хозяйстве 405
- •§ 1. Механические характеристики производственных механизмов и электродвигателей 405
- •§ 2. Механические характеристики электродвигателя постоянного тока параллельного возбуждения .... 4(8
- •§ 3. Механические характеристики электродвигателей последовательного возбуждения 415
- •§ 4. Механические характеристики синхронного электродвигателя 418
- •§ 5. Механические характеристики асинхронного электродвигателя 419
- •§ 6. Расчет пусковых и тормозных сопротивлений . . . 423
- •§ 7. Лабораторная работа. Снятие механических характеристик электродвигателей 430
- •§ 1. Уравнение движения электропривода 432
- •§ 2. Приведение моментов сопротивления и моментов
- •§ 3. Определение времени разбега и торможения электропривода 436
- •Глава xl. Нагрев п охлаждение электрических машин,
- •§ 1. Нагрев и охлаждение электрических машин и трансформаторов при работе 440
- •§ 2. Предельные температуры перегрева частей электрических машин а трансформаторов 446
- •§ 4. Лабораторная работа. Определение номинальной
- •§ 1. Выбор электродвигателя и проверка его мощности по
- •§ 2. Выбор электродвигателя по роду тока и напряжению 459 I; 3. Выбор электродвигателя с учетом влияния маломощных источников энергоснабжения 460
- •§ 4. Выбор скорости вращения электродвигателя и передаточного отношения 461
- •Глава xlii. Коэффициент мощности и способы его улучшения 463
- •§ 1. Причины низкого коэффициента мощности в электроустановках 463
- •§ 2. Способы улучшения коэффициента мощности . . . 464
- •Глава xliii. Неполадки, общие для всех видов электрических машин 468
- •§ 1. Основные причины перегрева электрических машин
- •§ 2. Основные причины вибрации электрических машин 47q
- •§ 1. Основные причины неполадок в работе генераторов
- •§ 2. Основные причины неполадок в рабохе двигателей
- •Глава xlv. Основные неполадки в работе трансформаторов и машин переменного тока 474
- •§ 1. Основные причины неполадок в работе трансформаторов 474
- •§ 2. Основные причины неполадок в работе синхронных
- •§ 3. Основные причины неполадок в работе асинхронных
- •§ 4. Работа асинхронных двигателей при неформальном
- •§ 5. Лабораторная работа. Выявление неисправностей
которое
при достижении ротором двигателя
номинальных
оборотов будет очень
мало, потому что частота тока в ро-
торе
равна 2—3 гц.
Поэтому при работе двигателя большая
часть
тока будет прохо-
дить по второй
клетке,
так как она имеет малое
активное
сопротивле-
ние.
Вторую
клетку на-
зывают рабочей.
Вращающий
момент
двигателя М
равен сум-
ме моментов первой Мп
и
второй Мр
клеток
М
= Мп
+ МР
(рис.
256). Здесь кривая 1
показывает
изменение
момента пусковой клет-
ки,
кривая 2
— рабочей, а кривая 3
— изменение вра-
щающего момента
двигателя с изменением скольжения.
Статор
двигателя с глубоким пазом также не
отличается от статора обычного
короткозамкнутого двигателя, но пазы
ротора выполняют удлиненными, т. е.
глубокими, в них закладывают стержни
в виде тонких и высоких полос или
заливают алюминий.
На
рисунке 257, а
изображено распределение магнитного
потока рассеяния вокруг стержня. Нижняя
часть стержня охватывается большим
числом магнитных силовых линий, чем
верхняя, вследствие чего индуктивное
сопротивление нижней части стержня,
обусловленное величиной магнитного
потока рассеяния, значительно больше,
чем в верхней.
Так
как при пуске двигателя в ход, в начальный
момент, когда ротор еще неподвижен,
частота тока в роторе равна частоте
сети, то индуктивное сопротивление
ротора будет наибольшим.
В
момент пуска ток из нижней части стержня,
обладающей большим индуктивным
сопротивлением, чем верхняя, будет
вытесняться в верхнюю (рис. 257, б).
Вследствие этого как бы уменьшается
сечение стержня и увеличи-
Рис.
256. Кривые зависимости вра-
щающих
моментов от скольжения
двигателя с
двойной беличьей клет-
кой.
368§ 2. Двигатель с глубоким пазом
Двигатель |
|
мп/мк |
Обычный короткозамкнутый |
4,5—8 |
0,9-1,7 |
Двухклеточныи |
3,0—5,5 |
1,0—3,0 |
Глубокопазный ■ |
3,5—5,U |
1,2—1,6 |
Вопросы
для самопроверки.
Почему
в двухклеточном двигателе пусковой
момент развивает наружная клетка, а
рабочий внутренняя?
За
счет чего улучшаются пусковые свойства
глубокопаз- ного двигателя?
Перечислите
достоинства и недостатки двухклеточного
и глубокопазного двигателей.
369
ИНДУКЦИОННЫЕ
РЕГУЛЯТОРЫ И ФАЗОРЕГУЛЯТОРЫ
Наша
электропромышленность выпускает
индукционные регуляторы, которые
представляют собой заторможенный
асинхронный двигатель с фазным ротором.
Неподвижная
обмотка статора является проходной,
по ней проходит ток нагрузки, а обмотку
ротора, который можно поворачивать
червячной передачей, подключают
и,
иг
мин
Рис.
258. Трехфазный индукционный регулятор:
а
— схема; б — векторные диаграммы
напряжений.
к
сети (рис. 258, а).
Так как в трехфазной обмотке ротора
проходит трехфазный переменный ток,
то в ней индуктируется вращающийся
магнитный поток Ф,
который, пересекая витки обмоток статора
и ротора, индуктирует в них соответственно
э. д. с. Ег
и Е2.
Напряжение
на выходе индукционного регулятора U2
равно геометрической сумме напряжений
сети U1
и
э. д. с. статора Ех
(рис. 258, б):
U^U.
+ E,. (214)
Так
как все три фазы находятся в одинаковых
условиях, то для упрощения вычертим
векторную диаграмму напряжений только
для одной фазы.
Если
оси обмоток совпадают в пространстве,
то вращающийся магнитный поток Ф
одновременно набегает
370Глава XXXII
§ 1. Трехфазный индукционный регулятор
1
На
обмотки статора и ротора и индуктирует
в них э. Д. с.,
совпадающие по фазе, т.
е. направленные в одну сторону.
Тогда
напряжение на выходе U2
будет
равно максималь-
ному значению
t^2MaKC
(рис. 258,
б).
Повернув
ротор на 180 электрических градусов,
полу-
чим минимальное значение
напряжения на выходе Е/^ .
При
повороте ротора на а электрических
градусов напря-
жение на выходе U2
равно геометрической сумме векторов
О
A
= U1
и АВ
= Е-у.
Геометрическим местом концов
векторов
э. д. с. Ех
и напря-
жения U2
является круг,
описанный из точки
А
как
из центра радиусом АВ.
Ротор
поворачивают
червячной передачей
пото-
му, что при работе индук-
ционного
регулятора к ро-
тору приложен
большой
вращающий момент, а
червячная
передача слу-
жит
и
для поворота и
торможения ротора.
Так
как вектор напря-
жения U2
сдвигается
по
фазе относительно вектора
напряжения
сети U
1; ин-
дукционный
регулятор не может работать параллельно
с
трансформатором.
График
изменения напряжения на выходе
индукцион-
ного регулятора U2
в зависимости от угла а представлен
на
рисунке 259.
Индукционные
регуляторы применяют в сетях
для
регулирования напряжения под
нагрузкой. Для этой цели
их выпускают
как на низкое, так и на высокое напряже-
ние
до 10 кв
мощностью свыше 1000 ква
(тип МА-195).
Индукционные регуляторы
типа АИ-61 и АИ-62 рыпус-
кают на низкое
напряжение мощностью до 100 ква.
При-
меняют их большей частью в
лабораториях и в схемах
автоматики
для плавного регулирования напряжения.
Ротор
поворачивают или вручную от маховика,
наса-
женного на вал червяка, или
электродвигателем.
В
практике часто встречаются индукционные
регуля-
торы, изготовленные из
асинхронных двигателей с фазным
371
Рис.
259. График изменения напряжения на
выходе трехфазного индукционного
регулятора U2
в зависимости от угла поворота
ротора а.
