14.Сетевое оборудование и технологии
В данной параграфе рассмотрим сетевое оборудование необходимое для организации сети, такое как:
Сетевой кабель
Сетевые адаптеры (карты)
Поскольку информация – ресурс, имеющий количественную характеристику, то есть размер, а пропускная способность любой информационной магистрали ограничена, важно понимать, что информация передается с определенной скоростью. Количество информации измеряется в байтах, один байт состоит из 8 бит, что примерно соответствует одному печатному символу. Скорость передачи информации измеряется количеством бит передаваемым по информационному каналу за одну секунду. Так как бит очень маленькая единица, используют производные - килобиты и мегабиты в секунду. По скорости передачи данных современное оборудование для локальных сетей делится на 2 типа - 10-мегабитное и 100-мегабитное. То есть обмен данными производится со скоростью 10 или 100 мегабит в секунду. 10-мегабитная технология считается устаревающий, более перспективна 100-мегабитная, однако 100-мегабитное оборудование в 2 - 5 раз дороже. Кроме того, эти технологии не совместимы, если 100-мегабитное оборудование не умеет автоматически переключаться в 10-мегабитный режим, но оборудование с переключением 10/100 мегабит еще дороже чем просто 100-мегабитное. Следует так же отметить, что в сети Internet такие скорости возможны только на магистральных спутниковых или оптоволоконных каналах. В действительности скорость обмена в Internet колеблется от 14 до 256 килобит в секунду или до 2 мегабит по дорогим радиоканалам.
Для решения поставленных целей Международным институтом стандартов ISO (International Standarts Organization) выпущен набор спецификаций, описывающих модель взаимодействия открытых систем или так называюмую модель OSI (Model of Open System Interconnections). Полное название модели – ISO/OSI.
7.1. Назначение и классисрикаиио компьютерный сетей
Современные информационные технологии нуждаются во все более совершенных средствах обработки информации. Поэтому потребности в таких средствах постоянно растут. Объединение компьютеров и средств коммуникации оказало существенное влияние на принципы организации компьютерных систем. Модель, в которой один компьютер выполнял всю необходимую работу по обработке данных, уступила место модели, представляющей собой большое количество отдельных, но связанных между собой компьютеров. Такие системы называются компьютерными сетями. Два или более компьютера называются связанными между собой, если они могут обмениваться информацией.
Для каких же целей используются компьютерные сети?
• Первая цель — предоставление доступа к программам, оборудованию и особенно данным для любого пользователя сети. Это называется совместным использованием ресурсов.
• Вторая цель — обеспечение высокой надежности при помощи альтернативных источников информации. Например, все файлы могут быть расположены на двух или трех машинах одновременно, так что, если одна из них недоступна по какой-либо причине, то используются другие копии. Возможность продолжат работу, несмотря на аппаратные проблемы, имеет большое значение для военных и банковских задач, воздушного транспорта, безопасности ядерного реактора и т.п.
• Третья цель — экономия средств. Небольшие компьютерыобла-дают значительно лучшим соотношением цена-производительность, нежели большие. Это обстоятельство заставляет разработ-
338
чдков создавать системы на основе модели клиент-сервер. Обмен информацией в модели клиент-сервер обычно принимает форму запроса серверу на выполнение каких-либо действий. Сервер выполняет работу и отсылает ответ клиенту. Обычно в сети количество клиентов значительно больше числа используемых ими серверов.
• Четвертая цель — масштабируемость, т.е. способность увеличивать производительность системы по мере роста нагрузки. В случае модели клиент-сервер новые клиенты и новые серверы могут добавляться по мере необходимости.
• Пятая цель - ускорение передачи информации. Компьютерная сеть является мощным средством связи между удаленными друг от друга пользователями. Если один из них изменяет документ, находящийся на сервере, в режиме on-line, остальные могут немедленно увидеть эти изменения.
Имеется два важнейших параметра классификации сетей: технология передачи и размеры. -* Существуют два типа технологии передачи:
• широковещательные сети;
• сети с передачей от узла к узлу.
Широковещательные сети обладают единым каналом связи, совместно используемым всеми машинами сети. Короткие сообщения, называемые пакетами, посылаемые одной машиной, принимаются всеми машинами. Поле адреса в пакете указывает, кому направляется сообщение. При получении пакета машина проверяет его адресное поле. Если пакет адресован этой машине, она обрабатывает пакет. Пакеты, адресованные другим машинам, игнорируются.
Сети с передачей от узла к узлу состоят из большого количества соединенных пар машин. В такой сети пакету необходимо пройти через ряд промежуточных машин, чтобы добраться до пункта назначения. Часто при этом существует несколько возможных путей от источника к получателю.
Обычно небольшие сети используют широковещательную передачу, тогда как в крупных сетях применяется передача от узла к узлу.
Другим критерием классификации сетей является их размер. Сети можно разделить на локальные, муниципальные и глобальные. И, наконец, существуют объединения двух и более сетей. Хорошо известным примером такого объединения является Internet. Размеры
339сетей являются важным классификационным фактором, поскольку в сетях различного размера применяется различная техника.
Локальными сетями (ЛВС - локальные вычислительные сети или LAN — Local Area Network) называют сети, размещающиеся, как правило, в одном здании или на территории какой-либо организации размерами до нескольких километров. Их часто используют для предоставления совместного доступа компьютеров к ресурсам (например, принтерам) и обмена информацией. Локальные сети отличаются от других сетей тремя характеристиками: размерами, технологией передачи данных и топологией. Обычные ЛВС имеют пропускную способность канала связи от 10 до 100 Мбит/с, небольшую задержку — десятые доли мкс и очень мало ошибок.
Муниципальные или региональные сети (MAN — Metropolitan AN) являются увеличенными версиями локальных сетей и обычно используют схожие технологии. Такая сеть может объединять несколько предприятий корпорации или город. Муниципальная сеть может поддерживать передачу цифровых данных, звука и включать в себя кабельное телевидение. Обычно муниципальная сеть не содержит переключающих элементов для переадресации пакетов во внешние линии, что упрощает структуру сети.
Глобальные сети (Wide AN или ГВС) охватывают значительную территорию, часто целую страну или даже континент. Они объединяют множество машин, предназначенных для выполнения приложений. Эти машины называются хостами. Хосты соединяются коммуникационными подсетями или просто подсетями. Задачей подсети является передача ообщений от хоста хосту, подобно тому, как телефонная система переносит слова говорящего слушающему. То есть коммуникативный аспект сети — подсеть отделен от прикладного аспекта — хостов, что значительно упрощает структуру сети.
7.2. Типы сетей
Сети подразделяются на два типа: одноранговые и на основе сервера.
Между этими двумя типами сетей существуют принципиальные различия, которые определяют их разные возможности. Выбор типа сети зависит от многих факторов: размера предприятия и вида его деятельности, необходимого уровня безопасности, доступности адми-
340
нистргтивной поддержки, объема сетевого трафика, потребностей сетевых пользователей, финансовых возможностей.
В одноранговой сети все компьютеры равноправны. Каждый компьютер функционирует и как клиент, и как сервер. Нет отдельного компьютера, ответственного за администрирование всей сети. Пользователи сами решают, какие ресурсы на своем компьютере сделать доступными в сети.
Одноранговые сети, как правило, объединяют не более 10 компьютеров. Отсюда их другое название — рабочие группы. Одноранговые сети относительно просты, дешевле сетей на основе сервера, но требуют более мощных компьютеров. Требования к производительности и уровню защиты сетевого программного обеспечения (ПО) ниже, чем в сетях с выделенным сервером. Поддержка одноранговых сетей встроена во многие операционные системы (ОС), поэтому для организации одноранговой сети дополнительного ПО не требуется.
Если в сети более 10 компьютеров, то одноранговая сеть становится недостаточно производительной. Поэтому большинство сетей имеют другую конфигурацию - они работают на основе выделенного сервера. Выделенным сервером называется такой компьютер, который функционирует только как сервер и е используется в качестве клиента или рабочей станции. Он специально оптимизирован для быстрой обработки запросов от сетевых клиентов и обеспечивает защиту файлов и каталогов. Сети на основе сервера стали промышленным стандартом.
Основным аргументом при выборе сети на основе сервера является защита данных. Проблемами безопасности занимается один администратор: он формирует единую политику безопасности и применяет ее в отношении каждого пользователя сети.
Сети на основе сервера, в отличие от одноранговых сетей, способны поддерживать тысячи пользователей. При этом к характеристикам компьютеров и квалификации пользователей предъявляются более мягкие требования, чем в одноранговых сетях.
7.3. Топологио сетей
Термин топология сети характеризует способ организации физических связей компьютеров и других сетевых компонентов. Выбор той или иной топологии влияет на состав необходимого сетевого
341оборудования, возможности расширения сети и способ управления сетью. Топология — это стандартный термин. Все сети строятся на основе базовых топологий: шина, звезда, кольцо, ячеистая. Сами по себе базовые топологии не сложны, однако на практике часто встречаются довольно сложные их комбинации.
Шина. Эту топологию (рис. 7.1) часто называют линейной шиной. Она наиболее простая из всех топологий и весьма распространенная. В ней используется один кабель, называемый магистралью или сегментом, вдоль которого подключены все компьютеры.
|
С |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
к |
|
к |
|
к |
|
к |
|
|||||||||
т |
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
т |
Рис. 7. 1. Топология шина: С - сервер, К - компьютер, Т - терминатор
В сети с топологией шина данные в виде электрических сигналов передаются всем компьютерам сети, но принимает их тот, адрес которого совпадает с адресом получателя, зашифрованном в. этих сигналах. Причем в каждый момент времени передачу может вести только один компьютер. Поэтому производительность такой сети зависит от количества компьютеров, подключенных к шине. Чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. На быстродействие сети также влияют:
• тип аппаратного обеспечения сетевых компьютеров;
• частота, с которой компьютеры передают данные;
• тип работающих сетевых приложений;
• тип сетевого кабеля;
• расстояние между компьютерами в сети.
Шина — пассивная топология: компьютеры только слушают передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому выход одного или нескольких компьютеров из строя никак не сказывается на работе сети.
342
Электрические сигналы распространяются по всему кабелю - от одного конца к другому. Сигналы, достигшие концов кабеля, отражаются от них. Возникает наложение сигналов, находящихся в разных фазах, и, как следствие, их искажение и ослабление. Поэтому сигналы, достигшие конца кабеля, следует погасить. Для гашения сигналов на концах кабеля устанавливают терминаторы. При разрыве кабеля или отсутствии терминаторов функционирование сети прекращается. Сеть падает.
Звезда. При топологии звезда (рис. 7.2) все компьютеры с помощью сегментов кабеля подключаются к центральному устройству, называемому концентратором (hub). Сигналы от передающего компьютера поступают через концентратор ко всем остальным.
Рис. 7. 2. Топология звезда
В настоящее время концентратор стал одним из стандартных компонентов сетей. В сетях с топологией звезда он, например, служит центральным узлом. Концентраторы делятся на активные и пассивные. Активные регенерируют и передают сигналы так же, как репитеры. Их называют многопортовыми повторителями. Обычно они имеют от 8 до 12 портов для подключения компьютеров. Активные концентраторы следует подключать к электрической сети. К пассивным концентраторам относятся монтажные или коммутирующие панели. Они просто пропускают через себя сигнал, не усиливая и не восстанавливая его. Пассивные концентраторы не надо подключать к электрической сети.
Недостатки этой топологии: дополнительный расход кабеля, установка концентратора. Главное преимущество этой топологии перед шиной - более высокая надежность. Выход из строя одного или
343нескольких компьютеров на работу сети не влияет. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора приводит к падению сети. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи.
Кольцо. Компьютеры подключаются к кабелю, замкнутому в кольцо (рис. 7.3). Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии шина, здесь каждый компьютер выступает в роли репитера (повторителя), усиливая сигналы и передавая их следующему компьютеру. Поэтому выход из строя хотя бы одного компьютера приводит к падению сети.
К
к
к
к
к
к
с
Рис. 7. 3. Топология кольцо
Способ передачи данных по кольцу называется передачей маркера. Маркер (token) — это специальная последовательность бит, передающаяся по сети. В каждой сети существует только один маркер. Маркер передается по кольцу последовательно от одного компьютера к другому до тех пор, пока его не захватит тот компьютер, который хочет передать данные. Передающий компьютер добавляет к маркеру данные и адрес получателя, и отправляет его дальше по кольцу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя. Затем принимающий компьютер посылает передающему сообщение, в котором подтверждает факт приема. Получив подтверждение, передающий компьютер
344
восстанавливает маркер и возвращает его в сеть. Скорость движения маркера сопоставима со скоростью света. Так, в кольце диаметром 200 м маркер может циркулировать с частотой 477 376 об/с.
Ячеистая топология. Сеть с ячеистой топологией обладает высокой избыточностью и надежностью, так как каждый компьютер в такой сети соединен с каждым другим отдельным кабелем (рис. 7.4).
|
|
|
|
|
|
|
|
1 |
|
|
к |
|
к |
||
|
|
|
|||||
|
у? |
|
|
|
|||
к |
|
к |
|
к |
|||
|
|
||||||
1 |
|
|
|
|
|
|
|
Рис. 7.4. Ячеистая топология
Сигнал от компьютера-отправителя до компьютера-получателя может проходить по разным маршрутам, поэтому разрыв кабеля не сказывается на работоспособности сети. Основной недостаток - большие затраты на прокладку кабеля, что компенсируется высокой надежностью и простотой обслуживания. Ячеистая топология применяется в комбинации с другими топологиями при построении больших сетей.
Кроме базовых топологий существуют их комбинации - комбинированные топологии. Чаще всего используются две комбинированные топологии: звезда-шина и звезда-кольцо. Звезда-шина - несколько сетей с топологией звезда объединяются при помощи магистральной линейной шины (к концентратору подключены компьютеры, а сами концентраторы соединены шиной). Выход из строя одного компьютера не сказывается на работе всей сети, а сбой в работе концентратора влечет за собой отсоединение от сети только подключенных к нему компьютеров и концентраторов. Звезда-кольцо - отличие состоит только в том, что концентраторы в звезде-шине
345соединяются магистрааьной линейной шиной, а в звезде-кольце концентраторы подсоединены к главному концентратору, внутри которого физически реализовано кольцо.
7.4. Сетевые компоненты 7.4.1. Сетевые кобели
На сегодня подавляющая часть компьютерных сетей использует для соединения кабели. Это среда передачи сигналов между компьютерами.
В большинстве сетей применяются три основные группы кабелей:
• коаксиальный кабель;
• витая пара (twisted pair), неэкранированная (unshielded) и экранированная (shielded);
• оптоволоконный кабель.
Коаксиальный кабель до недавнего времени был самым распространенным. Недорогой, легкий, гибкий, удобный, безопасный и простой в установке.
Существует два типа коаксиальных кабелей: тонкий (спецификация 10Base2) и толстый (спецификация 10Base5).
Тонкий - гибкий, диаметр 0,64 см (0,25"). Прост в применении и подходит практически для любого типа сети. Подключается непосредственно к плате сетевого адаптера. Передает сигнал на 185 м практически без затухания. Волновое сопротивление — 50 ом.
Толстый — жесткий, диаметр 1,27 см (0,5"). Его иногда называют стандартный Ethernet (первый кабель в популярной сетевой архитектуре). Жила толще, затухание меньше. Передает сигнал без затухания на 500 м. Используют в качестве магистрали, соединяющей несколько небольших сетей. Волновое сопротивление - 75 ом.
Для подключения к толстому коаксиальному кабелю применяется специальное устройство - трансивер (transceiver - приемопередатчик). Он снабжен коннектором, который называется вампир или пронзающий ответвитель, К сетевой плате трансивер подключается с помощью кабеля с разъемом. Для подключения тонкого коаксиального кабеля используются BNC-коннекторы (British Naval Connector). Применяются BNC-T-коннекторы для соединения сетевого кабеля
с сетевой платой компьютера, BNC—баррел-коннекторы "для сращивания двух отрезков кабеля, BNC-терминаторы для поглощения сигналов на обоих концах кабеля в сетях с топологией шина.
Витая пара — это два перевитых изолированных медных провода. Несколько витых пар проводов часто помещают в одну защитную оболочку. Переплетение проводов позволяет избавиться от электрических помех, наводимых соседними проводами и другими внешними источниками, например двигателями, трансформаторами, мощными реле.
Неэкранированная витая пара (UTP) широко используется в ЛВС, максимальная длина 100 м. UTP определена особым стандартом, в котором указаны нормативные характеристики кабелей для различных применений, что гарантирует единообразие продукций.
Экранированная витая пара (STP) помещена в медную'оплетку. Кроме того, пары проводов обмотаны фольгой. Поэтому STP меньше подвержены влиянию электрических помех и может передавать сигналы с более высокой скоростью и на большие» расстояния.
Преимущества витой пары - дешевизна, простота при подключении. Недостатки - нельзя использовать при передаче данных на большие расстояния с высокой скоростью.
В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это надежный способ передачи, так как электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные.
Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается. Оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами: одно — для передачи, другое - для приема.
Скорость передачи данных в настоящее время составляет от 100 Мбит/с. Между тем, получает все большее распространение скорость 1 Гбит/с, теоретически — до 200 Гбит/с. Расстояние - многие километры. Кабель не подвержен электрическим помехам. Существенным недостатком этой технологии является дороговизна и сложность в установке и подключении.
Типичная оптическая сеть состоит из лазерного передатчика све-
346
347та, мультиплексора/демультиплексора для объединения оптических сигналов с разными длинами волн, усилителей оптических сигналов, демультиплексоров и приемников, преобразующих оптический сигнал обратно в электрический. Все эти компоненты обычно собираются вручную.
Для передачи по кабелю кодированных сигналов используют две технологии — немодулированную и модулированную передачу.
Смодулированные системы передают данные в виде цифровых сигналов, которые представляют собой дискретные электрические или световые импульсы. При таком способе цифровой сигнал использует всю полосу пропускания кабеля (полоса пропускания - разница между максимальной и минимальной частотой, которую можно передать по кабелю). Устройство в сетях с немодулированной передачей посылает данные в обоих направлениях. Для того, чтобы избежать затухания и искажения сигнала в смодулированных системах, используют репитеры, которые усиливают и ретранслируют сигнал.
Модулированные системы передают данные в виде аналогового сигнала (электрического или светового), занимающего некоторую полосу частот. Если полосы пропускания достаточно, то один кабель могут одновременно использовать несколько систем (например, транслировать передачи кабельного телевидения и передавать данные). Каждой передающей системе выделяется часть полосы пропускания. Для восстановления сигнала в модулированных системах используют усилители. В модулированной системе устройства имеют раздельные тракты для приема и передачи сигнала, так как передача идет в одном направлении. Чтобы устройства могли и передавать, и принимать данные, используют разбиение полосы пропускания на два канала, которые работают с разными частотами для передачи и приема, или прокладку двух кабелей — для передачи и приема.
7.4,2. Беспроводная среда
Словосочетание беспроводная среда не означает полное отсутствие проводов в сети. Обычно беспроводные компоненты взаимодействуют с сетью, в которой в качестве среды передачи используется кабель. Такие сети называют гибридными.
Беспроводная среда обеспечивает временное подключение к су-
шествующей кабельной сети, гарантирует определенный уровень мобильности и снижает ограничения на протяженность сети. Применяется в служебных помещениях, где у сотрудников нет постоянного рабочего места, в изолированных помещениях и зданиях, в строениях, где прокладка кабелей запрещена.
Существуют следующие типы беспроводных сетей: ЛВС, расширенные ЛВС и мобильные сети (переносные компьютеры). Основные различия между ними — параметры передачи. ЛВС и расширенные ЛВС используют передатчики и приемники той организации, в которой функционирует сеть. Для переносных компьютеров средой передачи служат общедоступные сети (например, телефонная или Internet).
ЛВС выглядит и функционирует практически так же, как и кабельная, за исключением среды передачи. Беспроводный сетевой адаптер с трансивером установлен в каждом компьютере, и пользователи работают так, будто их компьютеры соединены кабелем. Трансивер или точка доступа обеспечивает обмен сигналами между компьютерами с беспроводным подключением и кабельной сетью. Используются небольшие настенные трансиверы, которые устанавливают радиоконтакт с переносными устройствами.
Работа беспроводных ЛВС основана на четырех способах передачи данных: инфракрасном излучении, лазере, радиопередаче в узком диапазоне (одночастотной передаче), радиопередаче в рассеянном спектре.
7,4.3. Платы сетевого адаптера
Платы сетевого адаптера (СА) выступают в качестве физического интерфейса, или соединения, между компьютером и сетевым кабелем. Платы вставляются в слоты расширения материнской платы всех сетевых компьютеров и серверов или интегрируются на материнскую плату. Для обеспечения физического соединения между компьютером и сетью к разъему платы подключается сетевой кабель.
Плата СА выполняет:
• подготовку данных, поступающих от компьютера, к передаче по сетевому кабелю;
• передачу данных другому компьютеру;
348
349
• управление потоком данных между компьютером и кабельной системой;
• прием данных из кабеля и перевод их в форму, понятную ЦП компьютера.
Плата СА должна также указать свое местонахождение или сетевой адрес, чтобы ее могли отличить от других плат сети. Сетевые адреса определены комитетом IEEE (Institute of Electrical and Electronics Engineers, Inc.), который закрепляет за каждым производителем плат сетевого адаптера некоторый интервал адресов. Производители зашивают эти адреса в микросхемы, поэтому каждый компьютер имеет свой уникальный номер, т.е. адрес в сети.
Перед тем, как послать данные по сети, плата СА проводит электронный диалог с принимающей платой, в результате которого они устанавливают:
• максимальный размер блока передаваемых данных;
• объем данных, пересылаемых без подтверждения о получении;
• интервал между передачами блоков данных;
• интервал, в течение которого необходимо послать подтверждение;
• объем данных, который может принять плата без переполнения буфера;
• скорость передачи.
Если новая (более сложная и быстрая) плата взаимодействует с устаревшей (медленной) платой, то они должны найти общую для них обеих скорость передачи. Схемы современных плат позволяют им приспособиться к низкой скорости старых плат. Каждая плата оповещает другую о своих параметрах, принимая чужие параметры и подстраиваясь к ним. После определения всех деталей начинается обмен данными.
Для правильной работы платы должны быть корректно установлены следующие параметры:
• номер прерывания (IRQ - interrupt query);
• базовый адрес порта;
• I/O.Базовый адрес памяти;
• тип трансивера.
Для обеспечения совместимости компьютера и сети плата СА должна соответствовать внутренней структуре компьютера (архитектуре шины данных) и иметь соответствующий соединитель, подходящий к типу кабельной системы.
350
Например, плата, которая нормально работает в компьютере Apple Macintosh в сети с топологией шина, не будет работать в компьютере IBM в сети с топологией кольцо. Сеть топологии кольцо требует плату, которая физически отличается от применяемой в сети топологии шина, к тому же Apple использует другой метод сетевого взаимодействия.
7.5. СетеВые станбарты
Работа сети заключается в передаче данных от одного компьютера к другому. В этом процессе можно выделить следующие задачи:
1. Распознавание данных. *
2. Разбиение данных на управляемые блоки. 1
3. Добавление информации к каждому блоку о местонахождении данных и получателе.
4. Добавление информации для синхронизации # проверки ошибок.
5. Перемещение данных в сеть и отправка их по заданному адресу. Сетевая ОС при выполнении этих задач строго следует определенному набору процедур. Эти процедуры называются протоколами. Они регламентируют каждую сетевую операцию. Стандартные протоколы позволяют программному и аппаратному обеспечению разных производителей нормально взаимодействовать.
Существует два главных набора стандартов: эталонная модель 0SI и ее модификация Project 802. Для понимания технической стороны функционирования сетей необходимо иметь представление об этих моделях.
7.5.1. Эталонная моЗель O/I
В 1978 г. ISO (International Standards Organization) выпустила набор спецификаций, описывающих модель взаимодействия открытых систем, т.е. систем, доступных для связи с другими системами. Это был первый шаг к международной стандартизации протоколов. Все системы могли теперь использовать одинаковые протоколы и стандарты для обмена информацией.
В 1984 г. ISO выпустила новую версию своей модели, названную
351эталонной моделью взаимодействия открытых систем ISO. Эта версия стала международным стандартом. Ее спецификации используют производители при разработке сетевых продуктов, ее придерживаются при построении сетей. Полностью модель носит название ISO OSI (Open System Interconnection Reference Model). Для краткости будем ее называть модель OSI. Модель OSI не является сетевой архитектурой, так как не описывает службы и протоколы, используемые на каждом уровне. Она просто определяет, что должен делать каждый уровень. Важно также понимать, что эталонная модель не является чем-то реальным, таким, что обеспечивает связь. Сама по себе она не заставляет коммуникации функционировать и служит лишь для классификации. Она классифицирует то, что непосредственно работает, а именно - протоколы. Протоколом считается набор спецификаций, определяющих реализацию одного или нескольких уровней OSI. ISO разработала также стандарты для каждого уровня, хотя эти стандарты не входят в саму эталонную модель. Каждый из них был опубликован как отдельный международный стандарт.
Модель OSI имеет семь уровней. Каждому уровню соответствуют различные сетевые операции, оборудование и протоколы. Появление именно семи уровней было обусловлено функциональными особенностями модели.
Модель OSI без физического носителя показана на рис. 7.5. Определенные сетевые функции, выполняемые на каждом уровне, взаимодействуют только с функциями соседних уровней — вышестоящего и нижележащего. Например, Сеансовый уровень должен взаимодействовать только с Представительским и Транспортным уровнями. Все эти функции подробно описаны.
Каждый уровень выполняет несколько операций при подготовке данных для доставки по сети на другой компьютер. Уровни отделяются друг от друга границами — интерфейсами. Все запросы от одного уровня к другому передаются через интерфейс. Каждый уровень, выполняя свои функции, пользуется услугами нижележащего уровня. Самые нижние уровни - 1-й и 2-й — определяют физическую среду при передаче битов данных через плату СА и кабель. Самые верхние уровни определяют, каким способом реализуется доступ приложений к услугам связи.
Задача каждого уровня - предоставление услуг вышележащему уровню, маскируя при этом детали реализации этих услуг. Каждый
352
Прикладной
Уровень представления
Сеансовый
Интерфейс Е
Прикладной протокол Протокол уровня представления
Сеансовый протокол
Прикладной
Уровень представления
Сеансовый
Транспортный
Сетевой
2 |
Передачи данных |
|
1 Интерфейс , |
|
|
1 |
Физический |
|
Хост А
Транспортный протокол Внутренний протокол подсети
Транспортный
Сетевой
Передачи данных
Физический
W-V
Сетевой
Передачи данных
Физический
Маршрутизатор Маршрутизатор
Сетевой
Передачи данных
Физический
Хост В
Протоколы хост-маршрутизатор сетевого, передачи данных и физического уровней
Рис. 7.5. Эталонная модель OSI
уровень на компьютере-отправителе работает так, как будто он напрямую связан с соответствующим уровнем на компьютере-получателе. Эта виртуальная связь показана на рис. 7.5 пунктирными линиями. В действительности же связь осуществляется между соседними уровнями одного компьютера. ПО каждого уровня реализует определенные сетевые функции в соответствии с набором протоколов.
Перед отправкой в сеть данные разбиваются на пакеты, передаваемые между устройствами сети как единое целое. Пакет проходит
12. Информатика
353последовательно все уровни ПО от прикладного до физического, при этом на каждом уровне к пакету добавляется форматирующая или адресная информация, необходимая для безошибочной передачи данных по сети.
На принимающей стороне пакет также проходит через все уровни, но в обратном порядке. ПО каждого уровня анализирует информацию пакета, удаляет ту информацию, которая добавлена к пакету на таком же уровне отправителем, и передает пакет следующему уровню. По достижении пакетом Прикладного уровня вся служебная информация будет удалена, и данные примут свой первоначальный
вид.
Таким образом, только Физический уровень модели может непосредственно послать информацию соответствующему уровню другого компьютера. Информация на компьютере-отправителе и компьютере-получателе должна пройти все уровни, начиная с того, с которого она посылается, и заканчивая соответствующим уровнем того компьютера, которым она принимается. Например, если Сетевой уровень передает информацию с компьютера А, она спускается через Канальный и Физический уровни в сетевой кабель, затем попадает в компьютер В, где поднимается через Физический и Канальный уровни и достигает Сетевого уровня. В среде клиент-сервер примером такой информации служит адрес и результат контроля ошибок,
добавленные к пакету.
Взаимодействие смежных уровней осуществляется через интерфейс. Интерфейс определяет услуги, которые нижний уровень предоставляет верхнему, и способ доступа к ним.
Рассмотрим каждый из семи уровней модели OSI и услуги, которые они предоставляют смежным уровням.
Прикладной (Application) уровень. Уровень 7. Он представляет собой окно для доступа прикладных процессов к сетевым услугам. Услуги, которые он обеспечивает, напрямую поддерживают приложения пользователя. Прикладной уровень управляет общим доступом к сети, потоком данных и восстановлением данных после сбоев связи.
Уровень представления (Presentation). Уровень 6. Представительский уровень определяет формат, используемый для обмена данными между сетевыми компьютерами. Типичный пример работы служб Представительского уровня - кодирование передаваемых данных определенным стандартным образом. Уровень представления отвечает
354
за преобразование протоколов, трансляцию и шифрование данных, смену кодовой таблицы и расширение графических команд. Кроме того, он управляет сжатием данных для уменьшения объема передаваемых бит.
Сеансовый уровень (Session). Уровень 5. Сеансовый уровень позволяет двум приложениям разных компьютеров устанавливать, использовать и завершать соединение, называемое сеансом. Сеанс может предоставлять еще и расширенный набор услуг, полезный для некоторых приложений. Сеансовый уровень управляет диалогом между взаимодействующими процессами, устанавливая, какая из сторон, когда, как долго и т.д. должна осуществлять передачу.
Транспортный уровень (Transport). Уровень 4. Основная функция Транспортного уровня - принять данные от Сеансового уровня, разбить их при необходимости на небольшие части и передать Сетевому уровню, гарантируя, что эти части в правильном порядке прибудут по назначению. Все это должно быть сделано эффективно и так, чтобы изолировать более высокие уровни от каких-либо изменений в аппаратной технологии. Транспортный уровень также следит за созданием и удалением сетевых соединений, управляет потоком сообщений, проверяет ошибки и участвует в решении задач, связанных с отправкой и получением пакетов. Примеры протоколов транспортного уровня — TCP и SPX.
Сетевой уровень (Network). Уровень 3. Сетевой уровень управляет операциями подсети. Он отвечает за адресацию сообщений и перевод логических адресов и имен в физические. Сетевой уровень разрешает также проблемы, связанные с разными способами адресации и разными протоколами при переходе пакетов из одной сети в другую, позволяя объединять разнородные сети. Примеры протоколов сетевого уровня - IP и IPX.
Уровень передачи данных или канальный (Data Link). Уровень 2. Основная задача Канального уровня - преобразовать способность Физического уровня передавать данные в надежную линию связи, свободную от необнаруженных ошибок с точки зрения вышестоящего Сетевого уровня. Эту задачу Канальный уровень выполняет при помощи разбиения входных данных на кадры размером от нескольких сот до нескольких тысяч байтов. Каждый следующий кадр данных передается только после получения и обработки кадра подтверждения, посылаемого обратно получателем. Кадр - это логически орга-
355
низованная структура, в которую можно помещать данные. На рис. 7.6 представлен простой кадр данных, где идентификатор отправителя — адрес компьютера-отправителя, а идентификатор получателя — адрес компьютера-получателя. Управляющая информация используется для маршрутизации, указания типа пакета и сегментации. CRC (Cyclical Redundancy Check — циклический код) позволяет выявить ошибки и гарантирует правильный прием информации.
Идентификатор получателя
Управляющая информация
Данные
Идентификатор отправителя
Циклический код
Рис. 7.6. Кадр данных
Физический уровень (Physical). Уровень 1. Физический уровень осуществляет передачу неструктурированного, сырого, потока бит по физической среде (например, по сетевому кабелю). На этом уровне реализуются электрический, оптический, механический и функциональный интерфейсы с кабелем. Физический уровень также формирует сигналы, которые переносят данные, поступившие ото всех вышележащих уровней. На этом уровне определяется способ соединения сетевого кабеля с платой СА и способ передачи сигналов по сетевому кабелю. Физический уровень отвечает за кодирование данных и синхронизацию бит, гарантируя, что переданная единица будет воспринята именно как единица, а не как ноль. Уровень устанавливает длительность каждого бита и способ перевода в электрические или оптические импульсы, передаваемые по сетевому кабелю.
356
7.5.2. СгтюнЗарт IEEE Project 802
Два нижних уровня модели OSI относятся к оборудованию, а именно: сетевой плате и кабелю. Для постановки более четких требований к аппаратуре, которая работает на этих уровнях, IEEE разработал расширения, предназначенные для разных сетевых плат и кабелей. Эти расширения широко известны как Project 802, названные в соответствии с годом (1980) и месяцем (февраль) своего издания. Стандарты IEEE были опубликованы раньше модели OSI, но оба проекта разрабатывались примерно в одно время и при полном обмене информацией. Это и привело к созданию двух совместимых продуктов. ^
Project 802 установил стандарты для физических компонентов сети - интерфейсных плат и кабельной системы, которые работают на Канальном и Физическом уровнях модели OSI. Эти стандарты, называемые 802-спецификациями, распространяются на платы СА, компоненты ГВС, компоненты сетей, использующих коаксиальный кабель и витую пару. 802-спецификации определяют способы, в соответствии с которыми платы СА осуществляют доступ к физической среде и передают по ней данные. Это соединение, поддержка и разъединение сетевых устройств. Выбор протокола канального уровня - наиболее важное решение при проектировании ЛВС. Этот протокол определяет скорость сети, метод доступа к физической среде, тип кабелей, сетевые платы и драйверы.
Стандарты ЛВС, определенные Project 802, делятся на 16 категорий, каждая из которых имеет свой номер (от 802.1 до 801.16, например, 802.6 - сеть масштаба города, MAN; 802.10 — безопасность сетей; 802.11 - беспроводные сети).
Два нижних уровня модели, Канальный и Физический, устанавливают, каким образом несколько компьютеров могут одновременно, не мешая друг другу, использовать сеть. IEEE Project 802 предназначен именно для этих двух уровней. На рис.7.7 показаны Канальный уровень и два его подуровня.
Подуровень Управление логической связью (Logical Link Control, LLC) устанавливает и разрывает канал связи, управляет потоком данных, производит упорядочение и вырабатывает подтверждение приема кадров.
Подуровень Управление доступом к среде (Media Access Control,
3571------► |
Управление логической связью |
|
|
Канальный уровень |
|
------► |
Управление доступом к среде |
Рис. 7.7. Подуровни Управление логической связью и Управление доступом к среде
MAC) контролирует доступ к среде передачи, определяет границы кадров, обнаруживает ошибки, распознает адреса кадров. Он также обеспечивает совместный доступ плат СА к Физическому уровню. Этот подуровень напрямую связан с платой СА и отвечает за безошибочную передачу данных между двумя компьютерами сети.
7.5.3, Драйверы устройств и 0/1
Сетевые драйверы обеспечивают связь между платами СА и работающими на компьютере редиректорами. Редиректор - это часть сетевого ПО, которое принимает запросы ввода/вывода, относящиеся к удаленным файлам, и переадресовывает их по сети на другой
компьютер.
Драйверы платы СА располагаются на подуровне Управления доступом к среде Канального уровня. Подуровень MAC отвечает за совместный доступ плат СА к Физическому уровню. Таким образом, драйвер платы СА обеспечивает связь между компьютером и самой платой, связывая, в конечном итоге, компьютер с сетью.
Производители плат СА обычно предоставляют драйверы разработчикам сетевого ПО, которые включают их в состав своих продуктов. Производители сетевых ОС публикуют списки совместимого оборудования — перечень устройств, драйверы которых протестированы на совместимость с ОС. Список совместимого оборудования HCL (Hardware Compatibility List) для сетевой ОС содержит сотни моделей плат СА от разных производителей.
358
7.6. СетеВые арнитектуры
Сетевые архитектуры — это комбинация стандартов, топологий и протоколов, необходимых для создания работоспособной сети.
7.6.1. Методы Эоступо к сетеВому ресурсу
Для использования сетевого ресурса необходимо получить доступ к нему. Существуют три метода доступа: множественный доступ с контролем несущей, доступ с передачей маркера, доступ по приоритету запроса. Метод доступа — набор правил, которые определяют, как компьютер должен отправлять и принимать данные по сетевому кабелю.
Компьютеры получают доступ к сети поочередно на короткое время. Обычно несколько компьютеров в сети имеют совместный доступ к кабелю. Однако если два компьютера попытаются передавать данные одновременно, их пакеты столкнутся и будут испорчены. Возникает так называемая коллизия. Все компьютеры в сети должны использовать один и тот же метод доступа, иначе произойдет сбой в работе сети, когда отдельные компьютеры, чьи методы доминируют, не позволят остальным осуществлять передачу.
Множественный доступ с контролем несущей подразделяется на:
• множественный доступ с обнаружением коллизий;
• множественный доступ с предотвращением коллизий; Рассмотрим особенности каждого метода доступа. Множественный доступ с контролем несущей и обнаружением коллизий (Carrier-Sense Multiple Access with Collision Detection, CSMA/CD). Все компьютеры в сети - и клиенты, и серверы - прослушивают кабель, стремясь обнаружить передаваемые данные, т.е. трафик. Компьютер может начать передачу только тогда, когда убедится, что кабель свободен - трафик отсутствует. Пока кабель занят, ни один из компьютеров не может вести передачу. Если возникает коллизия, то эти компьютеры приостанавливают передачу на случайный интервал времени, а затем вновь стараются наладить связь. Причем периоды ожидания у них разные, что снижает вероятность одновременного возобновления передачи.
Название метода раскрывает его суть: компьютеры как бы про-
359слушивают кабель, отсюда - контроль несущей. Чаще всего сразу несколько компьютеров в сети хотят передать данные, отсюда множественный доступ. Прослушивание кабеля дает возможность обнаружить коллизии, отсюда обнаружение коллизий.
Способность обнаруживать коллизии ограничивает область действия самого CSMA/CD. При длине кабеля > 2,5 км механизм обнаружения коллизий становится неэффективным - некоторые компьютеры могут не услышать сигнал и начнут передачу, что приведет к коллизии и разрушению данных.
CSMA/CD является состязательным методом, так как компьютеры конкурируют между собой за право передавать данные. Он является громоздким, но современные реализации настолько быстры, что пользователи не замечают, что сеть работает, используя состязательный метод. Однако чем больше компьютеров в сети, тем интенсивнее сетевой трафик, и число коллизий возрастает, а это приводит к уменьшению пропускной способности сети. Поэтому в некоторых случаях метод CSMA/CD все же оказывается недостаточно быстрым. Так, лавинообразное нарастание повторных передач способно парализовать работу всей сети. Вероятность возникновения подобной ситуации зависит от числа пользователей, работающих в сети, и приложений, с которыми они работают. Например, БД используют сеть интенсивнее, чем ТП.
Множественный доступ с контролем несущей и предотвращением коллизий (Carrier-Sense Multiple Access with Collision Avoidance, CSMA/ CA). Этот метод самый непопулярный среди всех методов доступа. Каждый компьютер перед передачей данных в сеть сигнализирует о своем намерении, поэтому остальные компьютеры «узнают» о готовящейся передаче и могут избежать коллизий. Однако широковещательное оповещение увеличивает общий трафик и уменьшает пропускную способность сети. Поэтому CSMA/CA работает медленнее, чем
CSMA/CD.
Доступ с передачей маркера. Суть метода заключается в следующем: пакет особого типа, маркер (token), циркулирует от компьютера к компьютеру. Чтобы послать данные в сеть, любой компьютер должен сначала «дождаться» прихода свободного маркера и «захватить» его. Захватив маркер, компьютер может передавать данные. Когда какой-либо компьютер наполнит маркер своей информацией и пошлет его по сетевому кабелю, другие компьютеры уже не смогут
360
передавать данные, так как в каждый момент времени только один компьютер использует маркер. В сети не возникает ни состязания, ни коллизий, ни временных задержек.
Доступ по приоритету запроса (demand priority). Относительно новый метод доступа, разработанный для сети Ethernet со скоростью передачи 100 Мбит/с —100VG-AnyLan. Он стандартизован IEEE в категории 802.12. Этот метод учитывает своеобразную конфигурацию сетей 100VG-AnyLan, которые состоят только из концентраторов и оконечных узлов. Концентраторы управляют доступом к кабелю, последовательно опрашивая каждый узел в сети и выявляя запросы на передачу. Концентратор должен знать все адреса связи и узлы и проверять их работоспособность. Оконечным узлом в соответствии со спецификацией 100VG-AnyLan может быть компьютер, мост,'маршрутизатор или коммутатор. '
При доступе по приоритету запроса, как и при CSMA/CD, два компьютера могут конкурировать за право передать данные. Однако в этом методе реализуется принцип, по которому определенные типы данных, если возникло состязание, имеют соответствующий приоритет. Получив одновременно два запроса, концентратор вначале отдает предпочтение запросу с более высоким приоритетом. Если запросы имеют одинаковый приоритет, они будут выполнены в произвольном порядке.
Для сетей с использованием доступа по приоритету запроса разработана специальная схема кабеля, поэтому каждый компьютер может одновременно передавать и принимать данные. Применяется восьмипроводный кабель, по каждой паре проводов которого сигнал передается с частотой 25 Мгц.
7,6.2. ПереЭоча даннын по сети
Данные, состоящие из нулей и единиц, обычно содержатся в больших по размерам файлах. Однако сети не будут нормально работать, если компьютер будет посылать такой блок данных целиком. В это время другие компьютеры вынуждены долго ждать своей очереди. Такая ситуация похожа на монопольное использование сети. При этом, кроме монопольного использования сети, возникновение ошибок может привести к необходимости повторной передачи всего большого блока данных.
361
Чтобы быстро, не тратя времени на ожидание, передавать информацию по сети, данные разбиваются на маленькие управляемые блоки, содержащие все необходимые сведения для их передачи. Эти блоки называются пакетами. Под термином «пакет» подразумевается единица информации, передаваемая между устройствами сети как
единое целое.
При разбиении данных на пакеты сетевая ОС добавляет к каждому пакету специальную управляющую информацию, которая обеспечивает передачу исходных данных небольшими блоками, сбор данных в определенном порядке (при их получении), проверку данных на наличие ошибок (после сборки).
Компоненты пакета группируются по трем разделам: заголовок, данные и трейлер.
Заголовок включает:
• сигнал о том, что передается пакет,
• адрес источника,
• адрес получателя,
• информацию, синхронизирующую передачу.
Для большинства сетей размер пакета составляет от 512 байт до
4 Кбайт.
Содержимое трейлера зависит от протокола связи (протокол -это набор правил или стандартов для осуществления связи и обмена информацией между компьютерами). Чаще всего трейлер содержит информацию для проверки ошибок, называемую избыточным циклическим кодом (Cyclical Redundancy Check, CRC). CRC — это число, получаемое в результате математических преобразований данных пакета и исходной информации. Когда пакет достигает места назначения, эти преобразования повторяются. Если результат совпадает с CRC — пакет принимается без ошибок. В противном случае передача пакета повторяется.
Формат и размер пакета зависят от типа сети. Максимальный размер пакета определяет количество пакетов, которое будет создано сетевой ОС для передачи большого блока данных.
7.6.3. Сети Ethernet
Ethernet — самая популярная сейчас архитектура. Используется в сетях любого размера. Ethernet - это промышленный стандарт,
362
нашедший широкую поддержку среди производителей сетевого оборудования. Поэтому проблем, связанных с использованием устройств ризных производителей, почти не существует.
В конце 60-х гг. Гавайский университет разработал ГВС под названием ALOHA. Университет, расположенный на обширной территории, решил объединить в сеть все компьютеры. Одной из ключевых характеристик созданной сети стал метод доступа CSMA/CD. Эта сеть послужила основой для современных сетей Ethernet. В 1972 г. в исследовательском центре Пало Альто фирмы Xerox разработали кабельную систему и схему передачи сигналов, а в 1975 г. — первый продукт Ethernet. Первоначальная версия Ethernet представляла собой систему со скоростью передачи 2,94 Мбит/с и объединяла более 100 компьютеров с помощью кабеля длиной 1 км. Сеть Ethernet фирмы Xerox имела такой успех, что компании Xerox, Intel Corporation и Digital Equipment Corporation разработали стандарт Ethernet со скоростью передачи 10 Мбит/с. Сегодня его рассматривают как спецификацию, описывающую метод совместного использования среды передачи компьютерами и системами обработки данных. Спецификация Ethernet выполняет те же функции, что Физический и Канальный уровни модели OSI.
Ethernet использует немодулированную передачу, топологию шина и метод доступа CSMA/CD. Другие используемые топологии -звезда-шина. Спецификация - IEEE 802.3. Скорость передачи данных - 10 или 100 Мбит/с. Кабельная система — толстый и тонкий коаксиальный кабель, UTP.
Ethernet разбивает данные на пакеты (кадры), формат которых отличается от формата пакетов в других сетях. Длина 64—1518 байтов, но сама структура использует 18 байтов, поэтому остается 46— 1500 байтов.
Максимальная общая длина сети 925 м. Общее число компьютеров в сети достигает 1024.
7.6.4. Сети Token Ring
Версия сети Token Ring была представлена IBM в 1984 г. как часть предложенного фирмой способа объединения в сеть всего ряда выпускаемых IBM компьютеров и компьютерных систем. В 1985 г.
363
Token Ring стала стандартом ANSI/IEEE (ANSI — представитель ISO в США).
Сеть Token Ring является реализацией стандарта IEEE 802.5. От других сетей ее отличает не только наличие уникальной кабельной системы, но и использование метода доступа с передачей маркера. Топология типичной сети — звезда/кольцо. Соединение выполняется через концентратор в виде звезды, а физическое кольцо реализуется в концентраторе. Кабельная система - UTP и STP. Скорость передачи - 4 и 16 Мбит/с.
Когда в сети начинает работать первый компьютер, он генерирует маркер. Маркер проходит по кольцу от компьютера к компьютеру (направление движения маркера зависит от оборудования), пока один из них не сообщит о готовности передать данные и не возьмет управление маркером на себя. Маркер — это предопределенная последовательность бит, которая позволяет компьютеру отправить данные по кабелю. Когда маркер захвачен каким-либо компьютером, другие передавать данные не могут. Захватив маркер, компьютер отправляет кадр данных в сеть. Кадр проходит по кольцу, пока не достигнет узла с адресом, соответствующим адресу приемника в кадре. Компьютер-приемник копирует кадр в буфер приема и делает пометку в поле статуса кадра о получении информации. Кадр продолжает передаваться по кольцу, пока не достигнет отправившего его компьютера, который и удостоверяется, что передача прошла успешно. Компьютер изымает кадр из кольца и возвращает туда маркер. В сети одномоментно может передаваться только один маркер, причем только в одном направлении.
Передача маркера — детерминистический процесс. Это значит, что самостоятельно начать работу в сети (как при методе доступа CSMA/CD) компьютер не может. Он может передавать данные только после получения маркера. Каждый компьютер действует как однонаправленный повторитель, регенерируя маркер и посылая его дальше по кольцу.
Основным компонентом сетей Token Ring является концентратор, реализующий физическое кольцо. В сети с передачей маркера вышедший из строя компьютер или соединение останавливают движение маркера, что ведет к прекращению работы всей сети. Концентраторы разработаны таким образом, чтобы обнаруживать вышедшую из строя плату С А и вовремя отключать ее. Эта процедура позволяет
364
обойти отказавший компьютер, поэтому маркер продолжает циркулировать по сети.
7.7. Сетевые протоколы
Протоколы — это набор правил и процедур, регулирующих порядок осуществления некоторой связи. Протоколы реализуются во всех областях деятельности человека, например, дипломатических. В сетевой среде - это правила и технические процедуры, позволяющие нескольким компьютерам общаться друг с другом.
Различают три определяющих свойства протоколов:
1. Каждый протокол предназначен для различных задач \\ имеет свои преимущества и недостатки. '
2. Протоколы работают на разных уровнях модели OSI. Функции протокола определяются уровнем, на котором он работает.
3. Несколько протоколов могут работать совместно. В этом случае они образуют так называемый стек, или набор протоколов. Как сетевые функции распределяются по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека. Например, Прикладной уровень протокола TCP/IP соответствует уровню Представления модели OSI. В совокупности протоколы определяют полный набор функций и возможностей стека.
Передача данных по сети должна быть разбита на ряд последовательных шагов, каждому из которых соответствует свой протокол. Эти шаги должны выполняться на каждом сетевом компьютере в одной и той же последовательности. На компьютере-отправителе они выполняются сверху вниз, а на компьютере-получателе — снизу вверх.
Компьютер-отправитель в соответствии с протоколом выполняет следующие действия: разбивает данные на небольшие блоки — пакеты, с которыми может работать протокол; добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему; подготавливает данные к передаче через плату СА по сетевому кабелю.
Компьютер-получатель в соответствии с протоколом выполняет те же действия, но в обратном порядке. Он принимает пакеты данных из сетевого кабеля и через плату СА передает пакеты в компьютер. Затем он удаляет из пакета всю служебную информацию, добав-
365ленную компьютером-отправителем; копирует данные из пакета в буфер для их объединения в исходный блок данных; передает приложению собранный из пакетов блок данных в том формате, который использует это приложение.
И компьютеру-отправителю, и компьютеру-получателю необходимо выполнять каждое действие одинаковым способом, чтобы отправленные данные совпали с полученными.
До середины 80-х гг. большинство ЛВС были изолированными. С развитием ЛВС и увеличением объема передаваемой ими информации они стали компонентами больших сетей. Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными, а протоколы, поддерживающие передачу данных между сетями по нескольким маршрутам, — маршрутизируемыми. Такие протоколы служат для объединения локальных сетей, поэтому их роль постоянно возрастает.
Модель OSI помогает определить, какие протоколы нужно использовать на каждом ее уровне. Продукты разных производителей, которые соответствуют этой модели, способны вполне корректно взаимодействовать друг с другом. ISO, IEEE, ANSI, ITU (International Telecommunications Union) и другие организации по стандартизации разработали протоколы, соответствующие некоторым уровням модели OSI.
TCP/IP - стандартный промышленный набор протоколов, обеспечивающий связь в неоднородной среде, т.е. между компьютерами разных типов. Совместимость - одно из основных преимуществ TCP/IP, поэтому его поддерживают большинство ЛВС. Кроме того, TCP/IP предоставляет маршрутизируемый протокол для корпоративных сетей и доступ в Интернет. Из-за своей популярности TCP/IP стал стандартом де-факто для межсетевого взаимодействия. У TCP/ IP есть два главных недостатка: большой размер и недостаточная скорость работы. Но для современных ОС это не является проблемой (проблема только у DOS-клиентов), а скорость работы сравнима со скоростью работы протокола IPX.
Стек TCP/IP включает и другие протоколы:
• SMTP (Simple Mail Transfer Protocol) — для обмена E-mail;
• FTP (File Transfer Protocol) — для обмена файлами;
• SNMP (Simple Network Management Protocol) - для управления сетью.
366
TCP/IP разрабатывался специалистами МО США как маршрутизируемый, надежный и функциональный протокол. Он также представляет собой набор протоколов для ГВС. Его назначение — обеспечивать взаимодействие между узлами даже в случае ядерной войны. Сейчас ответственность за разработку TCP/IP возложена на сообщество Интернет в целом. Установка и настройка TCP/IP требует знаний и опыта со стороны пользователя, однако применение TCP/IP предоставляет ряд существенных преимуществ.
Протокол TCP/IP в точности не соответствует модели OSI. Вместо семи уровней в нем используется только четыре:
1. Уровень сетевого интерфейса.
2. Межсетевой уровень.
3. Транспортный уровень. '
4. Прикладной уровень. ! Каждый из них соответствует одному или нескольким уровням
модели OSI.
Уровень сетевого интерфейса, относящийся к Физическому и Канальному уровням модели OSI, напрямую взаимодействует с сетью. Он реализует интерфейс между сетевой архитектурой (Ethernet или Token Ring) и Межсетевым уровнем.
Межсетевой уровень, относящийся к Сетевому уровню модели OSI, использует несколько протоколов для маршрутизации и доставки пакетов. Для этого используются маршрутизаторы, которые работают на Сетевом уровне и могут переадресовывать и маршрутизировать пакеты через множество сетей, обмениваясь информацией между отдельными сетями.
Транспортный уровень, соответствующий Транспортному уровню модели OSI, отвечает за установку и поддержание соединения между двумя хостами. Транспортный уровень отвечает также за отправку уведомлений о получении данных, управление потоком, упорядочение пакетов и их повторную передачу. Transmission Control Protocol (TCP) отвечает за надежную передачу данных между узлами. Это ориентированный на соединение протокол, поэтому он устанавливает сеанс связи между двумя компьютерами прежде, чем начать передачу.
Прикладной уровень, соответствующий Сеансовому, Представительскому и Прикладному уровням модели OSI, соединяет в сети приложения.
3677.8. Среба клиент-серВер
Раньше сетевые системы основывались на модели централизованных вычислений, в которой один мощный сервер - мейнфрейм выполнял основную работу в сети, а пользователи получали доступ к нему при помощи недорогих и низкопроизводительных компьютеров — терминалов. В результате развития персональных компьютеров централизованную модель заменила модель клиент-сервер, предоставляющая при той же производительности возможности сетевой обработки данных.
В настоящее время большинство сетей использует модель клиент-сервер. Сеть архитектуры клиент-сервер - это сетевая среда, в которой компьютер-клиент инициирует запрос компьютеру-серверу, выполняющему этот запрос. Рассмотрим работу модели на примере системы управления БД - приложения, часто используемого в среде клиент-сервер. В модели клиент-сервер ПО клиента использует язык структурированных запросов SQL (Structured Query Language), который переводит запрос с языка, понятного пользователю, на язык, понятный машине. SQL близок к естественному английскому.
Клиент (пользователь) генерирует запрос с помощью интерфейсного приложения, которое обеспечивает интерфейс пользователя, формирует запросы и отображает данные, полученные с сервера. В клиент-серверной среде сервер не наделяется пользовательским интерфейсом. Представлением данных в удобной форме занимается сам клиент. Компьютер-клиент получает инструкции от пользователя, готовит их для сервера, а затем по сети посылает ему запрос. Сервер обрабатывает запрос, проводит поиск необходимых данных и отсылает их клиенту. Клиент в удобной для пользователя форме отображает полученную информацию. В клиент-серверной среде пользователь компьютера-клиента имеет дело с экранной формой. В ней он задает необходимые параметры информации. Интерфейсная часть одну и ту же информацию может представлять в различном виде.
Сервер в клиент-серверной среде обычно предназначен для хранения данных и управления ими. Именно сервер выполняет большинство операций с данными. Сервер называют также прикладной частью модели клиент-сервер, так как именно он выполняет запросы клиентов. Обработка данных на сервере состоит из их сортиров-
368
ки, извлечения затребованной информации и отправки ее по адресу пользователя. ПО предусматривает также обновление, удаление, добавление и защиту информации.
Технология клиент-сервер создает мощную среду, обладающую множеством реальных преимуществ. В частности, хорошо спланированная клиент-серверная система обеспечивает относительно недорогую платформу, которая обладает в то же время вычислительными возможностями мэйнфрейма и легко настраивается на выполнение конкретных задач. Кроме того, в среде клиент-сервер резко уменьшается сетевой трафик, так как по сети пересылаются только результаты запросов. Файловые операции выполняются в основном более мощным сервером, поэтому запросы лучше обслуживаются. Это означает, что нагрузка на сеть распределяется более равномерно,^чем в традиционных сетях на основе файл-сервера. Уменьшается потребность компьютеров-клиентов в ОЗУ, так как вся работа с файлами выполняется на сервере. По этой же причине на компьютерах-клиентах уменьшается потребность в дисковом пространстве. Упрощается управление системой, контроль ее безопасности становится проще, так как все файлы и данные размещаются на сервере. Упрощается резервное копирование.
7.9. Internet как иерарния сетей
Слово Internet происходит от выражения interconnected networks (связанные сети). Это глобальное сообщество малых и больших сетей. В широком смысле — это глобальное информационное пространство, хранящее огромное количество информации на миллионах компьютеров, которые обмениваются данными.
К концу 1969 г. в США был завершен проект ARPAnet подключением в одну компьютерную сеть 4 исследовательских центров: University of California Los Angeles, Stanford Research Institute, University of California at Santa Barbara, University of Utah. Проект также предусматривал проведение экспериментов в области компьютерных коммуникаций, изучение способов поддержания связи в условиях ядерного нападения и разработку концепции децентрализованного управления военными и гражданскими объектами в период
369ведения войн. В 1972 г. Минобороны США начало разработку новой программы Internetting Project с целью изучения методов соединения сетей между собой. Выдвигались требования максимальной надежности передачи данных при заведомо низком качестве коммуникаций, средств связи и оборудования и возможности передачи больших объемов информации. В 1974 г. была поставлена задача разработки универсального протокола передачи данных, которая была решена созданием протокола передачи данных и объединения сетей - Transmission Control Protocol/Internet Protocol (TCP/IP). В 1983 г. был осуществлен перевод ARPAnet на TCP/IP. В 1989 г. в Европейской лаборатории физики элементарных частиц (CERN, Швейцария, Женева) Тим Бернерс-Ли разработал технологию гипертекстовых документов - World Wide Web, позволяющую пользователям иметь доступ к любой информации, находящейся в сети Интернет на компьютерах по всему миру. К 1995 г. темпы роста сети показали, что регулирование вопросов подключения и финансирования не может находиться в руках одного Национального научного фонда США, и в этом же году произошла передача региональным сетям оплаты за подсоединение многочисленных частных сетей к национальной магистрали.
Рассмотрим схему подключения компьютера к Интернет и проследим, по каким каналам передается информация, посылаемая в Сеть и принимаемая из Сети. Подключение к Интернету домашнего компьютера выполняется, как правило, с помощью модема (рис. 7.8). При этом чаще всего осуществляется так называемое сеансовое соединение с провайдером по телефонной линии. Набирается один из телефонных номеров, предоставленных провайдером, для соединения с одним из его модемов. У провайдера имеется набор модемов, так называемый модемный пул. После того, как вы соединились с ISP (Internet Service Provider), ваш компьютер становится частью сети данного ISP. Каждый провайдер имеет свою магистральную линию или backbone.
ISP-провайдеры имеют так называемые точки присутствия POP (Point of Presence), где происходит подключение локальных пользователей. Провайдер может иметь точки присутствия POP в нескольких городах. В каждом городе находятся аналогичные модемные пулы, на которые звонят локальные клиенты этого провайдера в данном городе. Провайдер обычно арендует волоконно-оптические ли-
370
Магистральная сеть ISP-B
Высоко-пропускные каналы
WWW
Сервисы
Точка присутствия провайдера (POP) ISP-A
Рис. 7.8. Схема подключения компьютера к Internet
нии у телефонной компании для соединения всех своих точек присутствия. Крупные коммуникационные компании имеют собственные высокопропускные каналы.
Пусть имеются опорные сети двух Интернет-провайдеров. Очевидно, что все клиенты провайдера А могут взаимодействовать между собой по собственной сети, а все клиенты провайдера В — по своей, но при отсутствии связи между сетями А и В клиенты разных провайдеров не могут связаться друг с другом. Для реализации такой услуги провайдеры А и В подключаются к так называемым точкам доступа NAP (Network Access Points) в разных городах, и трафик между двумя сетями течет через NAP. Аналогично организуется подключение к другим магистральным сетям, в результате чего образуется объединение множества сетей высокого уровня. В Интернете
371действуют сотни крупных провайдеров, их магистральные сети связаны через NAP в различных городах, и миллиарды байтов данных текут по разным сетям через NAP-узлы.
В офисе компьютеры, скорее всего, подключены к локальной сети. В этом случае рассмотренная схема видоизменяется. Варианты подключения к провайдеру могут быть различными, хотя чаще всего это выделенная линия.
На сегодняшний день существует множество компаний, имеющих собственные опорные сети (бэкбоуны), которые связываются с помощью NAP с сетями других компаний по всему миру. Благодаря этому каждый, кто находится в Интернете, имеет доступ к любому его узлу, независимо от того, где он расположен территориально.
Скорость передачи информации на различных участках Интернета существенно различается. Магистральные линии - это высокоскоростные каналы, построенные на основе волоконно-оптических кабелей. Кабели обозначаются ОС (optical carrier), например ОС-3, ОС-12 или ОС-48. Так, линия ОС-3 может передавать 155 Мбит/с, а ОС-48 — 2488 Мбит/с (2,488 Гбит/с). Но максимальная скорость получения информации на домашний компьютер с модемным подключением не превышает 56 Кбит/с.
Как же происходит передача информации по всем этим многочисленным каналам? Доставка информации по нужному адресу выполняется с помощью маршрутизаторов, определяющих, по какому маршруту передавать информацию. Маршрутизатор — это устройство, которое работает с несколькими каналами, направляя в выбранный канал очередной блок данных. Выбор канала осуществляется по адресу, указанному в заголовке поступившего сообщения.
Таким образом, маршрутизатор выполняет две взаимосвязанные функции. Во-первых, он направляет информацию по свободным каналам, предотвращая закупорку узких мест в Сети; во-вторых, проверяет, что информация следует в нужном направлении. При объединении двух сетей маршрутизатор включается в обе сети, пропуская информацию из одной в другую. В некоторых случаях он осуществляет перевод данных из одного протокола в другой, при этом защищая сети от лишнего трафика. Эту функцию маршрутизаторов можно сравнить с работой службы ГИБДД, которая ведет наблюдение за автомобильным движением с вертолета и сообщает водителям оптимальный маршрут.
372
7.9.1. Протоколы интернет
Различают два типа протоколов: базовые и прикладные. Базовые протоколы отвечают за физическую пересылку сообщений между компьютерами в сети Internet. Это протоколы IP и TCP. Прикладными называют протоколы более высокого уровня, они отвечают за функционирование специализированных служб. Например, протокол HTTP служит для передачи гипертекстовых сообщений, протокол FTP — для передачи файлов, SMTP — для передачи электронной почты.
Набор протоколов разных уровней, работающих одновременно, называют стеком протоколов. Каждый нижележащий уровень стека протоколов имеет свою систему правил и предоставляет сервис вышележащим. Аналогично каждый протокол в стеке протоколов выполняет свою функцию, не заботясь о функциях протокола другого уровня. н
На нижнем уровне используются два основных протокола: IP (Internet Protocol - протокол Интернет) и TCP (Transmission Control Protocol - протокол управления передачей). Архитектура протоколов TCP/IP предназначена для объединения сетей. В их качестве могут выступать разные ЛВС (Token Ring, Ethernet и др.), различные национальные, региональные и глобальные сети. К этим сетям могут подключаться машины разных типов. Каждая из сетей работает в соответствии со своими принципами и типом связи. При этом каждая сеть может принять пакет информации и доставить его по указанному адресу. Таким образом, требуется, чтобы каждая сеть имела некий сквозной протокол для передачи сообщений между двумя внешними сетями.
Предположим, имеется некое послание, отправляемое по электронной почте. Передача почты осуществляется по прикладному протоколу SMTP, который опирается на протоколы TCP/IP. Согласно протоколу TCP, отправляемые данные разбиваются на небольшие пакеты фиксированной структуры и длины, маркируются таким образом, чтобы при получении данные можно было бы собрать в правильной последовательности.
Обычно длина одного пакета не превышает 1500 байт. Поэтому одно электронное письмо может состоять из нескольких сотен таких пакетов. Малая длина пакета не приводит к блокировке линий свя-
373зи и не позволяет отдельным пользователям надолго захватывать канал связи.
К каждому полученному TCP-пакету протокол IP добавляет информацию, по которой можно определить адреса отправителя и получателя. Это аналогично помещению адреса на конверт. Для каждого поступающего пакета маршрутизатор, через который проходит пакет, по данным IP-адреса определяет, кому из ближайших соседей необходимо переслать данный пакет, чтобы он быстрее оказался у получателя, т.е. принимает решение об оптимальном пути следования очередного пакета. При этом географически самый короткий путь не всегда оказывается оптимальным (быстрый канал на другой континент может быть лучше медленного в соседний город). Очевидно, что скорость и пути прохождения разных пакетов могут быть различными. Взаимосвязанные пакеты данных могут передаваться различными путями. Возможно, что пакеты будут путешествовать через разные континенты с различной скоростью. При этом пакеты, отправленные позже, могут дойти раньше. Независимо от длины пути в результате конечного числа пересылок TCP-пакеты достигают адресата.
Наконец, TCP-модуль адресата собирает и распаковывает IP-конверты, затем распаковывает TCP-конверты и помещает данные в нужной последовательности. Если чего-либо не достает, он требует переслать этот пакет снова. Пакеты не только теряются, но и могут искажаться при передаче из-за наличия помех на линиях связи. TCP решает и эту проблему. В конце концов, информация собирается в нужном порядке и полностью восстанавливается.
Таким образом, протокол IP осуществляет перемещение данных в сети, а протокол TCP обеспечивает надежную доставку данных, используя систему кодов, исправляющих ошибки. Причем два сетевых сервера могут одновременно передавать в обе стороны по одной линии множество TCP-пакетов от различных клиентов.
Необходимо подчеркнуть основное различие передачи информации по телефонной сети и по Интернету. Телефонная система при звонке по телефону в другой регион или даже на другой континент устанавливает канал между вашим телефоном и тем, на который вы звоните. Канал может состоять из десятков участков разной физической природы — медные провода, волоконно-оптические линии, беспроводные участки, спутниковая связь и т.д. Эти участки неиз-
374
менны на протяжении всего сеанса связи. Это означает, что линия между вами и тем, кому вы звоните, постоянна в течение всего разговора, поэтому повреждения на любом участке линии способны прервать ваш разговор. При этом выделенная вам часть сети для других уже недоступна. Речь идет о сети с коммутацией каналов. Интернет же является сетью с коммутацией пакетов. Процесс пересылки электронной почты принципиально иной.
Итак, Internet-данные в любой форме - электронное письмо, Web-страница или скачиваемый файл — путешествуют в виде группы пакетов. Каждый пакет посылается на место назначения по оптимальному из доступных путей. Поэтому даже если какой-то участок Интернет окажется нарушенным, то это не повлияет на доставку пакета, который будет направлен по альтернативному пути. Та*ким образом, во время доставки данных нет необходимости в фиксированной линии связи между двумя пользователями. Принцип пакетной коммутации обеспечивает основное преимущество Internet — надежность. Сеть может распределять нагрузку по различным участкам за тысячные доли секунды. Если какой-то участок оборудования сети поврежден, пакет может обойти это место и пройти по другому пути, обеспечив доставку всего послания. Прототип Интернет — сеть ARPAnet, разработанная по заказу Минобороны США, задумывалась именно как сеть, устойчивая к повреждениям (например, в случае военных действий), способная продолжать нормальное функционирование при выходе из строя любой ее части.
7,9.2. fldpecauun В интернет
Каждому компьютеру, подключенному к Интернету, присваивается идентификационный номер, который называется IP-адресом.
При сеансовом подключении к Интернету IP-адрес выделяется компьютеру только на время этого сеанса. Присвоение адреса компьютеру на время сеанса связи называется динамическим распределением IP-адресов. Оно удобно для провайдера, поскольку один и тот же IP-адрес в разные периоды времени может быть выделен разным пользователям. Таким образом, Интернет-провайдер должен иметь по одному IP-адресу на каждый обслуживаемый им модем, а не на каждого клиента.
IP-адрес имеет формат ххх.ххх.ххх.ххх, где ххх — числа от 0 до
375255. Рассмотрим типичный IP-адрес: 193.27.61.137. Для облегчения запоминания IP-адрес обычно выражают рядом чисел в десятичной системе счисления, разделенных точками. Но компьютеры хранят его в бинарной форме. Например, тот же IP-адрес в двоичном коде будет выглядеть так:
11000001. 00011011. 00111101. 10001001.
Четыре числа в IP-адресе называются октетами, поскольку в каждом из них при двоичном представлении имеется восемь разрядов: 4 • 8=32. Так как каждая из восьми позиций может иметь два различных состояния: 1 или 0, общий объем возможных комбинаций составляет 28 или 256, т.е. каждый октет может принимать значения от 0 до 255. Комбинация четырех октетов дает 232 значений, т.е. примерно 4,3 млрд комбинаций, за исключением некоторых зарезервированных адресов.
Октеты делят на две секции: Net и Host. Net-секция используется для того, чтобы определить сеть, к которой принадлежит компьютер. Host, который называют узлом, определяет конкретный компьютер в сети.
Подобная система используется и в обычной почте.
На ранней стадии своего развития Интернет состоял из небольшого количества компьютеров, объединенных модемами и телефонными линиями. Тогда пользователи могли установить соединение с компьютером, набрав цифровой адрес, например 163. 25. 51. 132. Это было удобно, пока компьютеров было мало. По мере увеличения их количества цифровые имена стали заменять текстовыми, потому что' текстовое имя проще запомнить, чем цифровое. Возникла проблема автоматизации этого процесса, и в 1983 г. в Висконсинском университете США была создана так называемая DNS-система (Domain Name System), которая автоматически устанавливала соответствие между текстовыми именами и IP-адресами. Вместо чисел была предложена ставшая сегодня для нас привычной запись типа www. myname. gorod. ru.
Подобным же образом осуществляется сортировка обычной почты. Люди привыкли ориентироваться по географическим адресам, в то время как автомат на почте быстро сортирует почту по индексу.
Таким образом, при пересылке информации компьютеры используют цифровые адреса, люди — буквенные, а DNS-сервер служит своеобразным переводчиком.
376
7.9.3, Ооменные имена
Когда происходит обращение на Web или посылается e-mail, то используется доменное имя. Например, адрес http://www.microsoft.com содержит доменное имя microsoft.com. Аналогично e-mail-адрес algol@rambler.ru содержит доменное имя rambler.ru.
В доменной системе имен реализуется принцип назначения имен с определением ответственности за их подмножество соответствующих сетевых групп.
Каждая группа придерживается этого простого правила. Имена, которые она присваивает, единственны среди множества ее непосредственных подчиненных, поэтому никакие две системы, где бы они ни находились в Интернете, не смогут получить одинаковые им^на. Так же уникальны адреса, указываемые на конвертах при доставке писем обычной почтой. Таким образом, адрес на основе географических и административных названий однозначно определяет точку назначения.
Домены имеют подобную иерархию. В именах домены отделяются друг от друга точками: addressx.msk.ru, addressy.spb.ru. В имени может быть различное количество доменов, но обычно их не больше пяти. По мере движения по доменам в имени слева направо, количество имен, входящих в соответствующую группу, возрастает.
Для перевода буквенного доменного имени в IP-адрес цифрового формата служат DNS-серверы.
В качестве примера рассмотрим адрес group, facult. univers. rst. ru.
Первым в имени стоит название рабочей машины — реального компьютера с IP-адресом. Это имя создано и поддерживается группой facult. Группа входит в более крупное подразделение univers, далее следует домен rst - он определяет имена ростовской части сети, а ш — российской.
Каждая страна имеет свой домен: аи - Австралия, be - Бельгия и т.д. Это географические домены верхнего уровня.
Помимо географического признака используется организационный признак, в соответствии с которым существуют следующие доменные имена первого уровня:
• com — коммерческие предприятия,
• edu — образовательные учреждения,
• gov — государственные учреждения,
377• mil — военные организации,
• net — сетевые образования,
• org — учреждения других организаций и сетевых ресурсов. Внутри каждого доменного имени первого уровня находится целый ряд доменных имен второго уровня. Домен верхнего уровня располагается в имени правее, а домен нижнего уровня — левее.
Так, в адресе www. continent, rst. ш домен верхнего уровня ш указывает на то, что адрес принадлежит российской части Интернет, rst - определяет город, следующий уровень - домен конкретного предприятия.
Лавинообразное подключение в сети Интернет обнажило проблему недостатка адресного пространства. В 1995 г. организация IETF (Internet Engineering Task Force - инженерные силы Интернет) опубликовала рекомендации по протоколу IP следующего поколения -IP v. 6 (сейчас IP v. 4), которые предполагают постепенный переход с существующей 32-разрядной системы присвоения IP-адресов на 128-разрядную систему. Такая мера сулит увеличение адресного пространства в 296 раз, что позволит каждому жителю планеты иметь несколько адресов. Переход уже начался. Вместе с использованием новых оптоволоконных каналов для увеличения скорости в сотни и тысячи раз расширение адресного пространства даст возможность осуществить проект Интернет 2. Эта сеть в настоящее время развертывается в США для ряда университетов, школ, федеральных агентств и крупных компьютерных компаний.
Во время приема запроса на перевод доменного имени в IP-адрес DNS-сервер выполняет одно из следующих действий:
• отвечает на запрос, выдав IP-адрес, если знает IP-адрес запрашиваемого домена;
• взаимодействует с другим DNS-сервером для того, чтобы найти IP-адрес запрошенного имени, если он его не знает (такой запрос может проходить по цепочке DNS-серверов несколько раз);
• выдает сообщение: «Я не знаю IP-address домена, запрашиваемого вами, но вот IP-address DNS-сервера, который знает больше меня»;
• сообщает, что такой домен не существует.
Предположим, вы набрали адрес group, facull. univers. rst. com, который имеет адрес в домене верхнего уровня СОМ. В простейшем варианте браузер контактирует с DNS-сервером для того, чтобы по-
378
лучить IP-адрес искомого компьютера, и DNS-сервер возвращает этот искомый IP-адрес.
Одна из причин надежной работы этой системы — ее избыточность. Существует множество DNS-серверов на каждом уровне, и поэтому если один из них не может дать ответ, то точно существует другой, на котором есть необходимая информация.
Система кэширования делает поиск более быстрым. DNS-сервер, однажды сделав запрос на корневой DNS и получив адрес нужного DNS-сервера, кэширует полученный IP-адрес. В следующий раз он уже не будет повторно обращаться с подобным запросом. Подобное кэширование происходит с каждым запросом, что постепенно оптимизирует скорость работы системы. Пользователям работа DNS-сервера не видна, однако эти серверы каждый день выполняют миллиарды запросов, обеспечивая работу миллионов пользователей.
7,9,4, Варианты доступа В интернет
Провести соединение между ISP-провайдером и пользователями - задача не из простых. Обычно провайдер подключен к Интернет с помощью дорогостоящего оптоволоконного высокоскоростного канала. Один провайдер обслуживает множество клиентов, которые рассредоточены на большой территории. Технология, по которой осуществляется связь между абонентами и местной телекоммуникационной службой, т.е. провайдером, получила название технологии последней мили. Название это условное (обычно расстояние от абонента до провайдера не превышает 4 км).
Существует целый ряд технологий, позволяющих использовать имеющуюся инфраструктуру - телефонные линии, сети кабельного телевидения и т.д., - для осуществления доступа в Интернет.
Наиболее распространенный среди домашних пользователей в России способ доступа в Интернет — доступ по коммутируемой телефонной линии с помощью модема. Скорость доступа при таком способе подключения не более 56 Кбит/с, но такая скорость сегодня мало кого устраивает. Какие же альтернативные технологии позволяют получить более высокую скорость доступа в Интернет?
Обычный телефон использует лишь низкочастотный диапазон линии. Однако провод телефонной линии способен передавать го-
379раздо больше данных, если использовать более, широкую полосу (полоса пропускания обычной телефонной линии 3400 КГц). Поэтому телефонную сеть, которая изначально предназначалась для передачи голосового сигнала, приспособили для высокоскоростной передачи цифровых данных.
DSL-технология (Digital Subscriber Line — цифровая абонентская линия) позволяет использовать более широкую полосу пропускания для передачи данных без ущерба для использования телефонной линии по прямому назначению. Существует целое семейство технологий под общим названием xDSL, где приставка х указывает на конкретную спецификацию семейства DSL. Эта технология весьма перспективна, она позволяет одновременно работать в Интернете и разговаривать по телефону. Скорость подключения по ней намного выше, чем при помощи обычного модема. DSL не требует прокладки новых проводов, так как использует уже имеющуюся телефонную
линию.
Одним из основных преимуществ технологии xDSL является высокоскоростной доступ в Интернет. При работе в Интернет основной поток информации идет из сети к пользователю, а в сеть передается гораздо меньший объем данных. Действительно, при просмотре Web-страниц в ответ на небольшой запрос пользователь получает из Сети не только текст, но и изображения. Таким образом, информационный обмен является асимметричным.
ADSL (Asymmetrical DSL), или асимметричный DSL, позволяет передавать данные пользователю со скоростью, на порядок превышающую скорость передачи данных от пользователя. При этом сигнал от пользователя в Сеть передается на более низких частотах, чем сигнал из Сети к пользователю. Теоретически при этом можно иметь канал с пропускной способностью 1 Мбит/с в прямом направлении (в Сеть) и 8 Мбит/с — в обратном. При этом одна и та же линия может использоваться для передачи голоса и цифровых данных. По сравнению с коммутируемым доступом ADSL-линия работает, как минимум, на два порядка быстрее. Высокая скорость позволяет комфортно работать с Web-сайтами с мультимедийной информацией, быстро перекачивать большие файлы и полноценно использовать интерактивные приложения.
Достоинства ADSL: легкость установки (используется уже имеющаяся телефонная линия), постоянный доступ в Интернет (пользо-
380
ватели ADSL не разделяют полосу пропускания с другими абонентами).
Недостаток ADSL: ограничения по дальности. Скорость передачи потока данных в обратном направлении существенно зависит от расстояния. Если при расстоянии 3 км можно получить скорость около 8 Мбит/с, то на расстоянии 5 км — только 1,5 Мбит/с.
На стороне пользователя компьютер подключается к ADSL-модему. Принцип действия ADSL-модема заключается в том, что диапазон частот в интервале 24—1100 КГц разбивается на 4 КГц полосы, на каждую из которых назначается виртуальный модем. Таким образом, каждый из этих 249 виртуальных модемов работает со своим диапазоном. ADSL-модем подключается к частотному разделителю. Частотный разделитель представляет собой фильтр низких частот, разделяющий низкочастотный сигнал обычной телефонной связи и высокочастотный ADSL-сигнал. Конструктивно частотный разделитель, или сплиттер, выполняется в виде блока, имеющего три гнезда: для подключения ADSL-модема, телефонного апнарата и линии. Частотный разделитель позволяет подключить к одной линии и компьютер, и телефон. Таким образом, по одной линии могут передаваться и цифровые компьютерные сигналы, и аналоговые сигналы телефонной связи.
На телефонной станции такой же частотный разделитель позволяет разделять низкочастотные и высокочастотные сигналы на другом конце абонентной линии. Голосовой аналоговый сигнал направляется в телефонную сеть общего пользования, а цифровой сигнал - на мультиплексор доступа DSLAM. На стороне провайдера сигнал от мультиплексора доступа DSLAM через модемный пул и сервер попадает в Интернет.
Мультиплексор доступа DSLAM (Digital Subscriber Line Access Multiplexer) - это устройство, установленное на телефонной станции, которое осуществляет подключение всех DSL-абонентов к одной высокоскоростной линии.
ADSL — весьма экономичная технология. Обычно такая линия обходится потребителю намного дешевле, чем выделенный канал аналогичной пропускной способности. По данной технологии может быть подключен не только отдельный компьютер, но и локальная сеть.
DSL-технология позволяет также использовать широкополосный
381доступ. Понятие «широкополосный доступ» означает, что канал предоставляет расширенную полосу частот для передачи информации. Высокая скорость передачи информации достигается благодаря тому, что с использованием широкой полосы частот информация может быть мультиплексирована и отправлена на нескольких различных частотах, позволяя, таким образом, передавать за единицу времени большее количество информации. Как известно, мультиплексирование - это передача нескольких сигналов по одному физическому каналу путем разделения его на подканалы. Говоря о частотном мультиплексировании, имеют в виду частотное разделение на подканалы. Под термином узкополосный доступ обычно понимается канал, достаточный для передачи голоса. Скорость передачи по такому каналу не превышает 64 Кбит/с. Считается, что широкополосный доступ - это канал со скоростью передачи не менее 256 Кбит/с. Широкополосный доступ позволяет передавать в одном канале различные сигналы и одновременно пользоваться телефоном, телевизором и Интернетом.
Выделенная телефонная линия — это арендованная телефонная линия связи, соединяющая без коммутации двух абонентов. Наиболее распространенной технологией выделенной линии является технология ISDN (Integrated Services Digital Network).
ISDN - это стандарт цифровой передачи. Основным компонентом любой ISDN-линии является однонаправленный канал или В-канал с пропускной способностью 64 Кбит/с. По этому каналу могут передаваться цифровые данные и, соответственно, оцифрованные видео- и аудиоданные. Для расширения полосы пропускания В-кана-лы группируются по два. В состав группы включается также D-канал (16 Кбит/с), управляющий передачей данных.
Передача информации может осуществляться по обычному медному проводу. Пользователи, которые устанавливают ISDN-адаптер вместо модема, могут получить доступ в Интернет со скоростью до 128 Кбит/с. ISDN требует установки адаптеров на обоих концах линии передачи. ISDN-канал обычно предоставляется телефонными станциями. По линии ISDN можно вести телефонные разговоры и одновременно передавать данные в Интернет.
Сеть кабельного телевидения первоначально была разработана как система для передачи аналогового видеосигнала в одном направлении — в сторону пользователя. Позднее были созданы так называе-
382
мые кабельные модемы, которые кодируют и передают данные по кабелю таким образом, что это не мешает передаче телевизионного сигнала. Основным достоинством этой технологии является то, что используются уже имеющиеся сети кабельного телевидения. При доступе в Интернет по сетям кабельного телевидения обеспечивается высокая скорость передачи информации. Полосы пропускания телевизионного кабеля вполне достаточно для предоставления услуг последней мили при скоростях, сравнимых с теми, что предоставляют операторы DSL.
В отличие от ADSL, которая обеспечивает высокоскоростную передачу данных по одной телефонной линии, сети кабельного телевидения являются сетями коллективного пользования. Кабельные модемы получают услугу от общего источника информации. Рабрчая полоса частот кабельного модема разделяется между всеми пользователями, подключенными к линии, и, следовательно, зависит от количества одновременно работающих пользователей. Обычно к одной модемной системе подключается несколько десятков абонентов. Чем больше клиентов одновременно посылают данные, тем меньше скорость их передачи. На практике скорость передачи данных от пользователей при применении кабельного модема часто меньше, чем при использовании ADSL.
Для организации связи между пользователем и опорной точкой радиосети провайдера используют радиоканал для высокоскоростного доступа в Интернет. С помощью этой технологии к Интернету можно подключить как индивидуальных пользователей, так и ЛВС. Для этого у абонента устанавливается радиомодем, который подключается к сетевой карте ПК или к хабу/маршрутизатору (в случае подключения ЛВС). Радиомодем соединен с направленной антенной, установленной на крыше здания. Антенна абонента направляется на базовую станцию провайдера. Связь между точкой входа в Интернет провайдера и абонентом осуществляется по радиоканалу.
С помощью данной технологии можно также объединить в сеть несколько филиалов компании без кабельного соединения. Для этого в каждом подразделении устанавливается абонентский комплект: направленная антенна и радиомодем. Провайдер обеспечивает связь между всеми точками доступа фирмы и правильную маршрутизацию данных.
Оборудование беспроводных сетей работает в диапазоне частот
3832,4 ГГц. Сигналы такой частоты распространяются вдоль прямой линии, соединяющей антенны, поэтому радиоканал может быть организован при условии прямой видимости между абонентской антенной и антенной провайдера. На практике направленные антенны обеспечивают дальность связи до 30 км.
Преимущества радиоканала: быстрая инсталляция, мобильность (нет кабеля), высокая скорость (несколько Мбит/с в зависимости от оборудования), затраты (первоначальные затраты на оборудование выше, чем в случае выделенной линии, но абонентская плата ниже).
В случае отсутствия телефонных станций и кабельного телевидения может помочь спутниковый доступ в Интернет. При этом скорость доступа на порядок выше, чем по обычному модему через коммутируемую телефонную линию, но несоизмеримо ниже ASDL-доступа. Существует две разновидности организации высокоскоростного доступа в Интернет по спутниковому каналу: симметричная и
асимметричная.
В случае симметричного доступа клиент осуществляет передачу запроса на спутник и прием данных со спутника. Подобное решение является достаточно дорогим, как по части клиентского оборудования, так и по стоимости абонентской платы.
В случае асимметричного доступа клиент осуществляет передачу запроса на получение требуемой информации по наземному каналу, а принимает информацию со спутника. Пользователь связывается с любым провайдером Интернета через обычный телефонный модем. Используя этот канал связи, он регистрируется на сервере провайдера, который обеспечивает асимметричный доступ в Интернет. После авторизации весь поток информации, поступающей в адрес пользователя через Интернет, направляется к нему не по обычной телефонной линии, а через спутниковый канал.
В последние годы активно разрабатываются технологии, направленные на использование бытовой электрической сети для доступа в Интернет. Одно из важнейших преимуществ бытовой электрической сети состоит в ее распространенности. Поэтому идея передачи информации по такой сети очень перспективна. Поскольку бытовая электрическая сеть первоначально не была предназначена для передачи информации, то это создает ряд технических трудностей. Электропроводка характеризуется высоким уровнем шумов, быстрым затуханием высокочастотного сигнала, а также изменением коммуникационных параметров в зависимости от текущей нагрузки.
384
Несмотря на технические трудности, сегодня уже имеются технологии, позволяющие использовать силовую кабельную инфраструктуру. В частности, компании Nor.web и United Utilities разработали технологию DPL (Digital Power Line), позволяющую передавать голос и пакеты данных через простые электрические сети 120/220 В со скоростью до 1 Мбит/с.
Ожидается, что DPL-технология сможет дать новый импульс развитию средств передачи данных по линиям электропитания и сделает возможным прямой доступ в Интернет практически из любой точки земного шара по минимальной стоимости. Пока эта технология не получила широкого распространения, однако в ближайшем будущем можно ожидать существенных изменений на рынке провайдерских услуг и снижения расценок на доступ в Сеть, включая цены на коммутируемые и выделенные линии. 1
Если эта технология получит распространение, она сможет значительно изменить расстановку сил на рынке предоставления Internet-доступа. Технология будет способствовать проявлению новых принципов проектирования силовых электрических сетей с учетом как энергетических, так и коммуникационных требований.
7.9,5. Системе аЭресоиии URL
Чтобы найти документ в сети Интернет, достаточно знать ссылку на него — так называемый универсальный указатель на ресурс URL (Uniform Resource Locator — унифицированный указатель ресурса), который указывает местонахождение каждого файла, хранящегося на компьютере, подключенном к Интернету.
Адрес URL является сетевым расширением понятия полного имени ресурса, например, файла или приложения и пути к нему в операционной системе. В URL, кроме имени файла и директории, где он находится, указывается сетевое имя компьютера, на котором этот ресурс расположен, и протокол доступа к ресурсу, который можно использовать для обращения к нему.
Рассмотрим некоторые URL:
http://www.abc.def.ru/kartinki/SLIDE.htm
Первая часть http:// (Hypertext Transfer Protocol) — протокол передачи гипертекста, по которому обеспечивается доставка докумен-
13, Инф
385та с Web-сервера, указывает браузеру, что для доступа к ресурсу применяется данный сетевой протокол.
Вторая часть www.abc.def.ru указывает на доменное имя.
Третья часть kartinki/SLIDE.htm показывает программе-клиенту, где на данном сервере искать ресурс. В данном случае ресурсом является файл в формате html, а именно SLIDE.htm, который находится в папке kartinki.
Имена директорий, содержащиеся в URL, — виртуальные и не имеют ничего общего с реальными именами каталогов компьютера, на котором выполняется Web-сервер, а являются их псевдонимами. Ни один владелец компьютера, на котором выполняется Web-сервер, не позволит постороннему пользователю, обращающемуся к Web-серверу через Интернет, иметь доступ к реальной файловой системе этого компьютера.
При написании URL важно правильно указывать верхние и нижние регистры. Дело в том, что Web-серверы функционируют под управлением разных операционных систем, а в некоторых из них имена файлов и приложений являются регистро-чувствительными.
В общем случае формат URL имеет вид: (протокол доступа) [://<домен>: <порт>](/<директория><имя ресурса>[/<параметры
запроса>].
Первая часть URL соответствует используемому протоколу доступа, например HTTP:// (протокол передачи гипертекста), FTP:// (File Transfer Protocol — протокол передачи файлов) и т.д.
Вторая часть URL-адреса указывает доменное имя, а также может указывать номер порта. Любой сервер предоставляет сервис, используя нумерованные порты. При этом каждая служба имеет свой номер порта. Клиенты подключаются к сервису по уникальному IP-адресу и по конкретному номеру порта. Так, если на компьютере функционируют Web-сервер и FTP-сервер, то обычно Web-сервер будет доступен по порту 80, а FTP-сервер — по порту 21. Каждый из распространенных сервисов имеет свой стандартный номер порта: WWW - 80, FTP - 21, ECHO - 7, TELNET - 23, SMTP - 25, GOPHER — 70 и т.д. Если номер порта не. указан, то по умолчанию предполагается 80. В рассмотренном выше примере номер порта указан не был, поэтому он будет определен по умолчанию в связи с именем используемого протокола, в данном случае — HTTP.
При этом следует учитывать, что если устанавливается свой Web-
386
сервер, то его можно поместить на другой свободный номер порта, например 920. В этом случае, если имя машины, например, aaa.bbb.com, то подключиться к этому серверу можно по URL http: //aaa.bbb.com:920.
Третья часть URL-адреса — путь доступа к файлу — аналогичен пути к файлу на клиентском компьютере. Если этот путь не указан, по умолчанию используется стандартный отклик, определяемый в настройках Web-сервера. В частности, стандартным откликом на HTTP-запрос для ряда Web-серверов служит вывод файла с именем index.html.
7.9.6. СерВисы интернет i
Обычно пользователи идентифицируют Интернет со службой WWW (World Wide Web — Всемирная паутина). Но эточцалеко не так, ибо WWW — одна из многочисленных служб Интернета. По аналогии Интернет можно сравнить с системой транспортных магистралей, а виды сервисов Интернет — с различными службами доставки.
В число наиболее часто используемых служб Интернет входят электронная почта, WWW, служба новостей Интернет, передача файлов по протоколу FTP, терминальный доступ по протоколу Telnet и ряд других служб.
Электронная почта. Электронная почта возникла раньше, чем Интернет, однако она не только не устарела, но, напротив, является наиболее массовой службой Сети и постоянно приобретает новых пользователей. Электронное письмо, как и обычное, содержит адреса отправителя и получателя. В него можно вложить графическое изображение или иной файл — точно так же, как в конверт с письмом можно положить открытку или фотографию. На него можно поставить электронную подпись, которая играет ту же роль, что и подпись в обычном письме. Однако служба e-mail давно обошла по популярности традиционную почту: ежегодно'в мире рассылается более 600 млрд электронных писем. Чем же вызвана такая популярность? Для ответа на этот вопрос перечислим достоинства электронной почты.
В отличие от телефонного звонка электронная почта может быть прочитана в удобное время, что особенно важно с учетом разницы
387во времени между часовыми поясами. Следует также отметить демократичность электронной почты: отправляя электронное письмо хоть самому президенту, вы не рискуете отвлечь его от текущих дел. К удобствам электронной почты следует также отнести возможность рассылки писем сразу большому количеству получателей, высокую скорость доставки, удобство пересылки вложенных файлов. Хранение писем в базе данных почтового клиента позволяет осуществлять быстрый поиск и сортировку почтовых отправлений. Кроме того, электронная почта в несколько сот раз дешевле обычной почтовой рассылки.
Обычно в момент регистрации доступа в Интернет сервис-провайдер предоставляет пользователю дисковое пространство под почтовый ящик: адрес этого почтового ящика (E-mail Account Address), имя пользователя (E-mail Account Login Name) и пароль (E-mail Account Password). Пароль для доступа предоставляется в целях предотвращения несанкционированного доступа к почте. Адрес электронной почты имеет формат: имя_пользователя @ имя_домена, например Ivanov@abc.rst.ru.
Часть слева от значка @ — это имя почтового ящика (E-mail Account Name) на сервере, из которого владелец этого адреса забирает письма (в данном примере — Ivanov). Как правило, имя пользователя совпадает с именем почтового ящика.
Часть справа от значка @ называется доменом и указывает на местонахождение этого почтового ящика. Нужно отметить, что носителем адреса электронной почты является вовсе не конечный пункт доставки, т.е. не адрес вашего домашнего компьютера, а адрес сервера, на котором вы будете получать почту.
Электронная почта построена по принципу клиент-серверной архитектуры. Пользователь общается с клиентской программой, которая, в свою очередь, общается с почтовым сервером. Очевидно, что процедуры отправки и получения почты требуют разной степени идентификации личности, поэтому существуют и два разных протокола - на отправку и на прием писем.
Для передачи писем используются протокол SMTP (Simple Mail Transfer Protocol — простой протокол пересылки почты) и соответственно SMTP-серверы. Чаще всего отправка почты происходит с почтового сервера вашего Internet-провайдера, хотя, в принципе, это не обязательно. Обычно SMTP-серверы не требуют идентификации,
388
поэтому вы можете отправить письмо с любого такого сервера. Для приема почтовых сообщений в настоящее время наиболее часто используется протокол РОРЗ (Post Office Protocol — протокол почтового офиса), который контролирует право пользователя забирать почту из ящика и поэтому требует предоставления имени пользователя и пароля.
Рассмотрим конкретный пример работы почты. Пусть некий владелец электронного ящика с адресом petya@abc.ru на почтовом сервере abc.ru пишет письмо владельцу почтового ящика с адресом vasya@xyz.com на сервере xyz.com.
Для того чтобы подготовить письмо, он вызывает клиентскую программу, создает текст сообщения и в графе Кому указывает адрес получателя vasya@xyz.com. Если отправитель не имеет постоянного подключения к Интернету, то после нажатия кнопки Отправить он устанавливает сеанс связи с провайдером и начинает получать накопившуюся почту и отправлять подготовленные письма. Порядок приема почты обычно зависит от текущих настроек почтовой программы. Нередко письма складываются в определенную папку и отправляются другой командой после установки связи с провайдером. Процесс загрузки на локальный компьютер вновь поступивших писем и отправления новых писем на сервер называется синхронизацией учетной записи.
После того как вы подключились к Интернету, клиентская программа соединяется с почтовым сервером и передает серверу почтовый адрес получателя vasya@xyz.com и текст самого сообщения. При отправке почты клиентская программа взаимодействует с сервером исходящей почты, т.е. с SMTP-сервером, по протоколу SMTP, подключаясь к порту с номером 25. Процедура отправки электронной почты заключается в копировании вновь подготовленных сообщений из базы клиента в базу почтового сервера (в нашем случае — сервера abc.ru).
Рассмотрим этот процесс более подробно. После того как письмо доставлено на сервер отправителя, SMTP-сервер последнего должен связаться с сервером получателя. Для этого ему необходимо знать IP-adpec SMTP-сервера, получающего почту для адресов из домена xyz.com. Чтобы узнать этот адрес, он обращается к DNS-cepeepy и задает ему вопрос: Каков IP-адрес SMTP-сервера, получающего почту для адресов из домена xyz.com?
389DNS-сервер выдает IP-адрес, после чего SMTP-сервер на abc.ru может соединиться с SMTP-сервером на xyz.com. Если по какой-либо причине SMTP-сервер на abc.ru не может связаться с SMTP-сервером на xyz.com, то послание встает в очередь для отправки. Обычно через каждые 15 минут производится попытка переслать послание из очереди. Через четыре часа отправителю будет послано сообщение о проблеме, а спустя пять дней большинство серверов прекращают попытки и возвращают отправителю недоставленную почту, так что бесследно ваше письмо не исчезнет.
Как только SMTP-серверу на abc.ru удается связаться с SMTP-сервером на xyz.com, он передает послание. Сервер xyz.com определяет, существует ли пользователь с именем vasya, и передает послание в ящик vasya.
После того, как почта оказалась на сервере xyz.com, получатель имеет возможность скачать ее оттуда. При получении почты, накопившейся в вашем почтовом ящике, клиентская программа получателя взаимодействует с РОРЗ-сервером по протоколу РОРЗ. Поскольку при входе в Интернет вы уже сообщаете свой пароль и логин, то обычно при получении почты дополнительного введения этих данных не требуется (следует отметить, что в принципе пароль на доз-вон и доступ к ящику не всегда один и тот же). Ваш почтовый клиент связывается с РОРЗ-сервером и передает команды, которые определяют передачу копий посланий электронной почты на локальную машину клиента.
WWW — самый популярный сервис Интернета. Именно он, благодаря своей относительной простоте и наглядности для пользователей, сделал столь массовыми обращения к ресурсам Сети.
В самом общем плане WWW — это система Web-серверов, поддерживающая документы, форматированные специальным образом. Служба WWW реализована в виде клиент-серверной архитектуры. Пользователь с помощью клиентской программы (браузера) осуществляет запрос той или иной информации на сервере, а Web-сервер обслуживает запрос браузера. Браузер — это программа, обеспечивающая обращение к искомому ресурсу на сервере по его URL, интерпретирующая полученный результат и демонстрирующая его на клиентском компьютере.
Протокол, по которому происходит доставка Web-сервером документа Web-браузеру, носит название HTTP (Hypertext Transfer
390
Protocol — протокол передачи гипертекста). Гипертекст — это текст, содержащий гиперссылки, связывающие слова или картинки документа с другим ресурсом (с каким-нибудь еще документом или с иным разделом этого же документа), при этом подобные связанные слова или картинки документа, как правило, выделяются, обычно с помощью подчеркивания. Пользователь может активировать эту связь щелчком мыши. Поскольку современные электронные документы содержат не только текст, но и любую мультимедийную информацию (текст, графика, звук), в качестве ссылок стали использовать не только текстовые, но и графические объекты. Со временем понятие гипертекста было расширено до понятия гипермедиа. Гипермедиа — это метод организации мультимедийной информации на основе ссылок на разные типы данных.
Особенно продуктивной идея гипертекста оказалась применительно к объединению цифровой информации, распределенной на серверах во всем мире.
WWW — это глобальная гипертекстовая система, организованная на базе Internet. WWW представляет собой механизм, при помощи которого связывается информация, доступная посредством многочисленных Web-серверов во всем мире. Web-сервер — это программа, которая умеет получать http-запросы и выполнять в соответствии с этими запросами определенные действия, например запускать приложения и генерировать документы.
Документ, доступный через Web, называют Web-страницей, а группы страниц, объединенные общей темой и навигационно, — Web-узлами, или Web-сайтами. Один аппаратный Web-сервер может содержать несколько Web-сайтов, но возможна и обратная ситуация, когда огромный Web-сайт может поддерживаться группой Web-серверов. Тот факт, что навигация не требует знаний о местоположении искомых документов, как раз и является основным удобством и причиной популярности службы WWW.
В браузерах реализованы две основные функции: запрос информации у Web-сервера и отображение ее на клиентском компьютере. Кроме того, браузеры обладают дополнительными сервисными функциями, такими как упрощение поиска, хранение закладок, указывающих на избранные страницы, и др.
Популярность WWW обусловлена тем, что можно не только просматривать чужие страницы и иметь доступ к огромному количеству
391информации, представленной на сотнях миллионов компьютеров, но и создать собственные ресурсы и таким образом донести любую информацию до всех будущих посетителей сайта. Иными словами, WWW — это глобальный механизм обмена информацией: одни люди помещают информацию на Web-серверы, а другие ее просматривают. Создав Web-сайт, владелец может поместить туда информацию различного рода: текст, графику, звук, анимацию, которая станет доступной для всех посетителей этого ресурса. С появлением в Сети вашей страницы информация о вас или о вашей фирме станет доступна сотням миллионов пользователей круглосуточно семь дней в неделю. Количество информации, которое может быть предоставлено посетителю, практически не ограничено по времени, в отличие от радио или телевидения.
7.9.7. Поиск В интернете
Бытует мнение, что в Интернете есть все, но найти там что-либо практически невозможно. Впрочем, противоположная точка зрения, взятая на вооружение поисковой системой Яндекс, гласит, что найти в Интернете можно все. Видимо, для того чтобы находить, нужно уметь искать.
Для поиска в Интернете предназначены различные инструменты: поисковые машины, индексированные каталоги, метапоисковые системы, тематические списки ссылок, онлайновые энциклопедии и справочники. При этом для поиска разного рода информации наиболее эффективными оказываются различные инструменты. Рассмотрим каждый инструмент в отдельности.
Индексированные каталоги содержат информацию, иерархически структурированную по темам. Тематические разделы первого уровня определяют широко популярные темы, такие как спорт, отдых, наука, магазины и т.д. В каждом разделе есть подразделы. Таким образом, путешествуя по дереву каталога, можно постепенно сужать область поиска. Дойдя до нужного подкаталога, вы находите в нем набор ссылок. Обычно в каталоге все ссылки являются профильными, поскольку составлением каталогов занимаются не программы, а люди. Очевидно, что если вы ищете информацию по некоторой широкой теме, то целесообразно обратиться к каталогу. Если же вам необходимо найти конкретный документ, то каталог окажется мало-
392
эффективным поисковым средством. Один из наиболее популярных каталогов в России - List.ru находится по адресу http://mail.ru/. Кроме каталогов общего назначения в Сети много специализированных каталогов. Если внутри отдельной темы каталога находится огромное количество ресурсов, возникает проблема выбора. В некоторых каталогах имеется сортировка по популярности, например в каталоге Яндекс сортировка идет по индексу цитирования. -
Тематические списки ссылок — это списки, составленные группой профессионалов или коллекционерами-одиночками. Часто узкоспециализированная тема может быть раскрыта одним специалистом лучше, чем группой сотрудников крупного каталога. Тематических коллекций в Сети очень много, поэтому давать конкретный адреса не имеет смысла. 1
Поисковые машины. В ответ на запрос мы обычно получаем длинный список документов, многие из которых не имеют никакого отношения к теме запроса. Такие документы называются нерелевантными, т.е. не относящимися к делу. Таким образом, релевантный документ — это документ, содержащий искомую информацию. Очевидно, что от умения грамотно делать запрос зависит процент получаемых релевантных документов. Доля релевантных документов в списке всех найденных поисковой машиной документов называется точностью поиска. Если все найденные документы релевантные, то точность поиска составляет 100 %. Если найдены все релевантные документы, то полнота поиска - 100 %, Таким образом, качество поиска определяется двумя параметрами: точностью и полнотой поиска. Эти величины взаимозависимы, т.е. увеличение полноты снижает точность, и наоборот.
Поисковая машина состоит из двух частей: робота, или паука, и поискового механизма. База данных робота формируется в основном им самим (робот сам находит ссылки на новые ресурсы) и в существенно меньшей степени - владельцами ресурсов, которые регистрируют свои сайты в поисковой машине. Помимо робота, который обходит все предписанные серверы и формирует базу данных, существует программа, определяющая рейтинг найденных ссылок.
Принцип работы поисковой машины сводится к тому, что она опрашивает свою базу данных по ключевым словам, которые пользователь указывает в поле запроса, и выдает список ссылок, ранжированный по релевантности.
393Поиск по индексу заключается в том, что пользователь формирует запрос и передает его поисковой машине. В случае, когда у пользователя имеется несколько ключевых слов, весьма полезно использование булевых операторов. Текст, в пределах которого проверяется логическая комбинация, называется единицей поиска. Это может быть предложение, абзац или весь документ. В разных поисковых системах могут использоваться различные единицы поиска. После того, как пользователь сделал запрос, поисковая система обрабатывает синтаксис запроса и сравнивает ключевые слова со словами в индексе. После этого составляется список сайтов, отвечающих запросу, они ранжируются по релевантности, и формируется результат поиска, который и выдается пользователю.
Существует огромное количество поисковых систем. Наиболее популярная на Западе поисковая система - Google (www.google.com). Всемирно популярный каталог Yahoo! в качестве поисковой системы использует именно Google. В Рунете самыми популярными поисковыми системами являются Яндекс (www.yandex.ru) и Рамблер (www.rambler.ru).
Метапоисковые системы. Так как Интернет развивается стремительными темпами, то рост количества документов происходит быстрее, чем поисковые системы успевают их проиндексировать. Отсюда следует, что даже если в Сети и есть то, что вы ищете, вовсе не обязательно, что об этом знает та поисковая машина, к которой вы обратились. Велика вероятность, что нужный документ проиндексирован другой поисковой системой. Поэтому существуют службы, позволяющие транслировать запрос сразу в несколько поисковых систем, — это метапоисковые системы. Однако пользоваться ими во всех случаях не следует. Если документов по теме много, то метапоиск, возможно, даже вреден, поскольку смешивает разные логики ранжирования. Но если документов по теме мало, то метапоиск может быть полезен именно потому, что объединяет большое число поисковых систем.
Очень удобной в этом отношении является отечественная программа ДИСКо Искатель (www.disco.ru).
Онлайновые энциклопедии и справочники. Очень часто нужно найти не документ, содержащий то или иное ключевое слово, а именно - толкование искомого слова. Одной из крупнейших онлайновых энциклопедий является ресурс Яндекс.Энциклопедии (http://encycl.yandex.ru/). Этот проект содержит 219 968 статей из 14 энциклопедий, в том числе из БСЭ и Энциклопедии Брокгауза и Ефрона. К крупным относится и Энциклопедия Кирилла и Мефодия, которую можно найти по адресу www.km.ru.
Особенно актуальным является поиск толкований терминов по информационным технологиям, которые развиваются так быстро, что уследить за появлением новых терминов очень сложно. Единственный ресурс на русском языке, который можно назвать компьютерным энциклопедическим словарем, — это проект Компьютерная энциклопедия Кирилла и Мефодия (http://www.megakm.ru/pc/), предусматривающая поиск не только по термину, но и по тематической структуре. Объем словаря терминов - 700 статей. Объем англоязычного словаря FOLDOC (Free On-line Dictionary Of Computing*: http:// wombat.doc.ic.ac.uk/) - более 13 тыс. терминов.
7.9.8. Практические рекомендации
1. Используйте различные инструменты для поиска информации разного профиля. Поиск в каталоге дает представление о структуре вопроса, поисковая система позволяет найти конкретный документ.
2. Избегайте общих слов, осуществляя поиск в поисковой машине. Чем уникальнее ключевое слово, по которому осуществляется поиск, тем скорее вы его найдете. Логика здесь очевидна, однако факты позволяют лучше понять ситуацию: 400 наиболее часто употребляемых слов русского языка со всеми словоформами (около 2 тысяч) составляют одну треть всех слов в среднестатистическом тексте, а частотный список на 8 тыс. слов покрывает уже 80 % всех словоупотреблений в текстах.
3. Ищите больше нем по одному слову. Сократить объем ссылок можно, определив несколько ключевых слов. Используйте синонимы.
4. Не пишите прописными буквами. Избегайте написания ключевого слова с прописной буквы. В ряде поисковых систем заглавные буквы позволяют искать имена собственные, например фирма Intel.
3955. Используйте функцию Найти похожие документы. Если один из найденных документов ближе к искомой теме, чем остальные, нажмите на ссылку Найти похожие документы.
6. Пользуйтесь языком запросов. С помощью языка запросов можно сделать запрос более точным.
7. Пользуйтесь расширенным запросом. Во многих поисковых системах есть форма расширенного запроса, в которой можно использовать основные механизмы сужения поиска.
8. Пользуйтесь метапоисковыми системами, если по теме мало документов.
