Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции математическое моделирование физических процессов.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.82 Mб
Скачать

12. Дискретно-детерминированные модели (f-модели)

Автомат можно представить как некоторое устройство, на которое подаются входные сигналы и снимаются выходные и которое может иметь некоторые внутренние состояния. Конечным автоматом называется автомат, у которого множество внутренних состояний и входных сигналов (а следовательно, и множество выходных сигналов) являются конеч­ными множествами.

Абстрактно конечный автомат можно представить как математическую схему (F-схему), характеризующуюся шестью элементами:

1) конечным множеством X входных сиг­налов (входным алфавитом);

2) конечным множеством Y выходных сигналов (выходным алфавитом);

3) конечным множеством Z внут­ренних состояний (внутренним алфавитом или алфавитом состоя­ний);

4) начальным состоянием ;

5) функцией переходов ;

6) функцией выходов .

Автомат, задаваемый F-схемой: — функционирует в дискретном времени, такты, каждому из которых соответ­ствуют постоянные значения входного и выходного сигналов и вну­тренние состояния.

Обозначим состояние, а также входной и выходной сигналы, соответствующие такту через , , . При этом, по условию , , , .

Абстрактный конечный автомат имеет один входной и один выходной каналы. В каждый момент дискретного времени F-автомат находится в определенном состоянии состояний автомата, причем в начальный момент времени он всегда находится в начальном состоянии . В момент , будучи в состоянии z(t), автомат способен воспринять на входном канале сигнал и выдать на выходном канале сигнал , переходя в состояние .

Если , , … - это входное, то , , … - выходное слово.

Таким образом, работа конечного автомата происходит по следующей схеме: в каждом такте на вход автомата, находящегося в состоянии z(t), подается некоторый сигнал x(t), на который он реагирует переходом в такте в новое состояние с выдачей некоторого выходного сигнала.

Получаем:

Для F-автомата первого рода (автомат Мили):

для F-автомата второго рода

Автомат второго рода, для которого , , т.е. функция выходов не зависит от входной переменной , называется автоматом Мура.

По числу состояний различают:

1) конечные автоматы с памятью

2) автоматы без памяти

По характеру отсчета дискретного времени конечные автоматы делятся на:

1) синхронные.

2) асинхронные - считывает входной сигнал непрерывно,

Чтобы задать конечный F-автомат, необходимо описать все элементы множества:

. При чем необходимо выделить в момент Существует несколько способов задания работы F-автомата, но наиболее часто используют табличный способ.

Табличный способ:

Строки соответствуют входным сигналам автомата, столбцы – его состояниям. Обычно первый слева столбец соответствует начальному состоянию z0 . На пересечении i-ой строки и k-го столбца таблицы переходов помещается соответствующее значение функции переходов, а в таблице выходов – соответствующее значение функции выходов.

Для F-автоматов Мура обе таблицы можно совместить, получая отмеченную таблицу переходов, в которой над каждым состоянием автомата, обозначающим столбец таблицы, стоит соответствующий этому состоянию выходной сигнал .

Таблица 1

...

ПЕРЕХОДЫ

...

...

...

...

...

...

...

ВЫХОДЫ

...

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ КОНЕЧНОГО АВТОМАТА, ЗАДАННОГО НАПРАВЛЕННЫМ ГРАФОМ

Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершины дуг графа, соответствующих тем или иным переходам автомата. Для автомата Мура аналогичная разметка графа такова: если входной сигнал xk, действуя на некоторое состояние автомата, вызывает переход в состояние zj то дугу, направленную в zj и помеченную xk, дополнительно отмечают выходным сигналом у = (zj, xk).

Таблица 2

xi

zk

z0

z1

z2

Переходы

x1

z2

z0

z0

x2

z0

z2

z1

Выходы

x1

y1

y1

y2

x2

y1

y2

y1

Таблица 3

xi

y

y1

y1

y3

y2

y3

z0

z1

z2

z3

z4

x1

z1

z4

z4

z2

z2

x2

z3

z1

z1

z0

z0

На рис. 3, а, б приведены заданные ранее таблицами F-автоматы Мили F1 и Мура F2 соответственно.

Рис. 3. Графы автоматов Мили (а) и Мура (6)

При решении задач моделирования систем часто более удобной формой является матричное задание конечного автомата. При этом матрица соединений автомата есть квадратная матрица С= ||сij||, строки которой соответствуют исходным состояниям, а столбцы — состояниям перехода. Элемент cij = xk / ys, стоящий на пересечении i-й строки и j-го столбца, в случае автомата Мили соответствует вход­ному сигналу xk, вызывающему переход из состояния zi в состояние zj, и выходному сигналу ys, вы даваемому при этом переходе. Для автомата Мили F1 матрица соединений имеет вид

.

Если переход из состояния zi в состояние zj происходит под действием нескольких сигналов, элемент матрицы cij представляет собой множество пар «вход-выход» для этого перехода, соединен­ных знаком дизъюнкции.

Для F-автомата Мура элемент cij равен множеству входных сигналов на переходе (zi, zj), а выход описывается вектором выходов

i-я компонента которого — выходной сигнал, отмечающий состоя­ние zi.