Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции математическое моделирование физических процессов.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.82 Mб
Скачать

11. Системы автоматического регулирования

При описании процесса автоматического управления реальный объект представляют обычно в виде двух систем: управляющей и управляемой (объекта управления).

Структура САУ:

где эндогенные переменные:

- векторы вх воздействий;

- векторы возмущающих воздействий;

- векторы сигналов ошибки;

- векторы управляющих воздействий.

Экзогенные переменные:

- вектор состояния системы ;

- вектор выходных переменных (обычно ).

Для одномерной системы ошибка управления системы , где - заданный закон изменения управляемой величины системы; - действительный закон изменения.

Если предписанный закон изменения управляемой величины соответствует закону изменения входного воздействия, т.е. (при условии линейной зависимости и ).

Система управления называется идеальной, если во все моменты времени. На практике это не возможно. Таким образом, ошибка - неизбежная составляющая объекта автоматического управления, основанного на принципе отрицательной обратной связи. Т.к. для приведения в соответствие выходной переменной её заданному значению используется информация об отклонениями между ними.

Задачей системы авт. управления является изменение переменной согласно заданному закону с определенной точностью (с допустимой ошиб­кой). При проектировании и эксплуатации систем авт. управления необходимо выбрать такие параметры системы , которые обеспечили бы требуемую точность управления, а также устойчивость системы в переходном процессе.

Если система устойчива, то представляют практический интерес поведение системы во времени, максимальное отклонение регулируемой переменной в переходном процессе, время переходного процесса, граничные условия.

Свойства систем автоматического упра­вления различных классов можно смоделировать с помощью дифференциаль­ных уравнений и их коэффициентов. Порядок дифференциального уравнения и значения его коэффициен­тов полностью определяются статическими и динамическими пара­метрами системы .

Пример:

Рассмотрим одноканальную систему автоматического управления SA, которая описывается -схемой общего вида:

, (1)

где ;

Пусть система SA, работает в некотором режиме малых отклонений от и , т.е. и .

Тогда уравнение (1) можно линеаризовать, разложив функцию в ряд Тейлора и ограничиться его линейными членами относительно приращений и , т.е.:

(2)

Т.к. уравнение (2) приблизительно описывает рассматриваемый процесс, то производные вычисляются при некоторых фиксированных значениях входящих в него переменных, т.е. мы получаем системы с постоянными коэффициентами.

Уравнения получаются линейными относительно и и их производных.

Методы решения и исследования линейной системы значительно проще, чем общего вида. Таким образом:

(3)

В уравнении (3) для простоты предполагается, что точка приложения возмущающих воздействий совпадает с входом системы (т.е. совпадает с начальной точкой). Решить это уравнение можно, например, операторным методом, значения ДУ алгебраическим (метод конечных разностей).

Таким образом, использование Д-схем позволяет формализовывать процесс функционирования непрерывно-детерминированных систем S и оценить их основные характеристики, применяя аналитический или имитационный подход.