Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции математическое моделирование физических процессов.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.82 Mб
Скачать

9. Математические модели диффузных явлений в полупроводниках

Каждому типу природных взаимодействий можно подобрать более или менее адекватную ММ. Явление диффузии электронов и дырок в полупроводниках – пример наиболее простых и характерных взаимодействий на микроуровне. Уравнение непрерывности Пуассона выражает в полупроводниках скорости изменения концентрации свободных носителей заряда и записывается отдельно для электронов и дырок.

(1)

(2)

где - концентрация дырок и электронов

- заряд

- скорости процесса инерции-рекомбинации электронов и дырок

- плотность дырочного тока (3)

- плотность электронного тока (4)

- подвижности электронов и дырок

- коэффициенты диффузии дырок и электронов

- потенциал

Уравнения 1-2 показывают, что причинами изменения концентрации носителей может быть неодинаковость числа носителей, втекающих (и вытекающих) в элементарный объём полупроводника.

Тогда и наблюдается нарушение равновесия между процессами генерации и рекомбинации носителей.

Уравнения (3) и (4) называются уравнениями плотности тока, характеризуют причины протекания электрического тока в полупроводниках, электрический дрейф под воздействием электрического поля и диффузию носителей при наличии градиента концентрации.

Уравнение Пуассона характеризует зависимость изменений в пространстве напряженности электрического поля от распределения плотности электрических зарядов , тогда ,

где - относительная диэлектрическая проницаемость, - диэлектрическая постоянная

В качестве краевых условий в моделях полупроводниковых приборов используют зависимости потенциалов на контактах от . В основе модели диффузионных процессов лежит уравнение диффузии: ,

где - концентрация примесей, - коэффициент диффузии.

Краевые условия представлены зависимостью распределения примесей в объёме полупроводника в некоторый момент времени и зависимостью поверхностной концентрации от .

Всё это – математические схемы общего вида, но на практике на первоначальных этапах исследования используют типовые математические схемы.

10. Непрерывно – детерминированные модели

В непрерывно-детерминированных моделях случайные факторы не учитываются. Время непрерывно, недескретизированно.

Детерминированные уравнения, - в которых неизвестными были функции одной или нескольких переменных, причем в уравнения входят не только функции, но и их производные различных порядков.

Если неизвестные функции многих переменных, то уравнения называются в частных производных.

Если независимая переменная – одна, то ОДУ.

Если независимая переменная – время , то математическое соотношение в общем виде:

; ,

где ; , n – мерные векторы 

- вектор функция, которая определена на некотором - мерном множестве и является непрерывной.

Так как математические схемы такого вида отражают динамику излучаемой системы, то они и называются - схемы, т.е. динамическими.

В простейших случаях - записывается:

Наиболее важно для системотехники приложение - схем в ТАУ.

Рассмотрим в качестве примера две колебательные системы:

1. механическую - маятник.

2. электронную - колебательный контур.

Error: Reference source not found

1) ОДУ:

- масса маятника

- длина маятника

- ускорение свободного падения

- угол

период

2) ОДУ:

- индуктивность контура

- емкость контура

- заряд в момент времени

отсюда - период

Введём обозначение:

; ; ;

Т.е. получим ОДУ второго порядка, описывающего поведение этой замкнутой системы:

, где - параметры системы

- состояние системы в момент времени ; т.е. поведение обоих объектов может быть исследовано на основе одной математической модели, к тому же они взаимозаменяемы.

Если излучаемая система взаимодействует с внешней средой , то появляется входное воздействие (внешняя сила для , или источник энергии для ) и математическая модель имеет вид:

Получаем, что - входная, а - выходная переменная системы в момент .