- •Содержание
- •Лекция 1 Место планирования экспериментов в исследовании систем
- •1. Основы теории планирования эксперимента
- •2 Особенности экспериментальных исследований
- •Контрольные вопросы
- •Полный факторный эксперимент
- •Дробный факторный эксперимент
- •Контрольные вопросы
- •1 Движение по градиенту
- •2 Крутое восхождение по поверхности отклика
- •Контрольные вопросы
- •Контрольные вопросы
- •1 Исследование почти стационарной области
- •2 Канонический анализ уравнения регрессии
- •3 Отыскание условного экстремума при наличии нескольких
- •Контрольные вопросы
- •Лекция 6 Множественный регрессионный анализ
- •Контрольные вопросы
- •Эксперимента
- •1 Продолжительность экспериментов и интервал съема данных
- •2 Влияние погрешности регистрации статистических данных на
- •Контрольные вопросы
- •1 Постановка задачи и описание метода решения
- •2 Метод текущего регрессионного анализа
- •Контрольные вопросы
- •Лекция 9 Методы анализа больших систем. Компонентный и факторный анализы
- •1 Методы анализа больших систем
- •2 Компонентный анализ
- •3 Факторный анализ
- •Контрольные вопросы
- •Контрольные вопросы
- •Лекция 11 Дисперсионный анализ
- •1 Однофакторный дисперсионный анализ
- •2 Двухфакторный дисперсионный анализ
- •Контрольные вопросы
- •Лекция 12 Модели временных рядов и статистические оценки взаимосвязи временных рядов
- •1 Модели временных рядов
- •2 Статистические оценки взаимосвязи двух временных рядов
- •Контрольные вопросы
- •Лекция 13 Прогнозирование временных рядов
- •1 Основное содержание прогнозирования процессов
- •2 Методы прогнозирования временных рядов
- •3 Оценка адекватности и точности трендовых моделей прогноза
- •Контрольные вопросы
- •Список используемой литературы
2 Метод текущего регрессионного анализа
Пусть по некоторому числу наблюдений n в моменты i=1, 2, …n ищется оценка коэффициентов модели в момент времени (n+α), где α=1, 2, ..≤n [4] Влияние информации, полученной в моменты времени n, n-1, n-2,… на точность оценки B(n+α) неодинаково. Для оценки ценности информации вводится функция веса φ(n, j,γ), где j – номер текущего наблюдения.
Для определения структуры алгоритма вычисления B(n+α), воспользуемся критерием наименьших квадратов, произведя взвешивание квадратов ошибок:
(5)
Вычисление B(n+α) из условия минимума (5) приводит к методу текущего регрессионного анализа. Выбор веса φ дает различные оценки B(n+α), но не оптимальные.
Рассмотрим различные функции веса. Принимаем, что с «увеличением» возраста наблюдений ценность их для определения оценок B(n+α) убывает, функция веса уменьшается с ростом (n-j). Для параметров процесса B(i) с монотонно убывающими корреляционными функциями может использоваться функция веса:
(6)
Такой вид функции веса соответствует методу «скользящего интервала». Более удобно выбирать функцию веса вида:
(7)
Параметр γ выбирается из условия минимума (4).
Рекуррентный алгоритм вычисления оценок параметров модели определяется выражением (3). Запишем такой алгоритм для метода текущего регрессионного анализа. Введем следующие обозначения:
(8)
(9)
Матрица функции
«веса»
(10)
Коэффициенты
модели
(11)
Тогда величина L в (5) для выбора объема i может быть записана в следующем виде:
(12)
Минимизация (12) по оценке B(i+α) приводит к системе нормальных уравнений, как и в случае МРА:
откуда
(13)
При
единичной матрицы выражение (13) совпадает
с обычной мнк оценкой МРА.
Допустим, что после определения оценки B(i+α) появляется дополнительная информация x(i+1), y(i+1) необходимо подсчитать B(i+α+1). Тогда можно вновь воспользоваться формулой (13) подставляя в нее изменив входящие в нее матрицы (8-10).
Рассмотрим построение рекуррентного алгоритма вычисления B(i+α+1) используя уже подсчитанные величины B(i+α).
Для вычисления прогнозируемых значений коэффициентов B(n+α) по выборке из n наблюдений принимаем величину B(α) равной оценке мнк по имеющейся выборке:
(14)
Выбираем начальное значение обратной матрицы
(15)
Выбираем функцию
веса
где 0 < γ
< 1. (16)
Тогда рекуррентное выражение для вычисления прогнозных значений оценок параметров модели принимает вид:
где
