- •Internal combustion engine
- •Give equivalents to the following words and word combinations:
- •Translate the following sentences into Russian:
- •Using the English-Russian dictionary translate the following text
- •Into Russian:
- •IV. Translate the following information into English:
- •Translate the following sentences into Russian:
- •Explain and translate the following definitions of the car body elements:
- •Translate the following information into English:
- •Translate the following information into Russian:
- •Give equivalents to the following words and word combinations:
- •Translate the following sentences into Russian:
- •Translate the following information into English:
- •Translate the following text into Russian:
- •Give equivalents to the following words and word combinations:
- •Translate the following sentences into Russian:
- •Translate the following information into Russian:
- •Translate the following text into Russian:
- •Be ready to talk and discuss the general structure of a ship
- •Uss Nimitz’s catapult 1
- •Translate the following text into English:
- •Inspecting a used car
- •Incandescent lighting - освещение лампами накаливания
- •Answer and translate the following questions:
- •Translate the following sentences:
- •Translate the following text into Russian:
- •IV. Translate the following information into English:
- •Various definitions
- •Decipher and translate the following abbreviations:
- •Answer the following question:
- •Translate the following text into Russian:
- •Translate the following material into English:
- •I. Translate the following sentences:
- •II. Translate the following information in to Russian:
- •Translate the following advertising material into English:
- •Be ready to talk about the power supply at your home.
- •Introduction to power electronics
- •I. Answer the following questions:
- •Translate into English words in brackets and then the sentences
- •Into Russian:
- •Translate the following text: Conductors
- •Translate the following sentences:
- •Translate into English: Теория цепей
- •Translate into Russian: Current supply
- •Give equivalents to the following words and word combinations:
- •Translate and answer the following questions:
- •Translate the following text:
- •Translate the text and be ready to discuss the general radio design:
- •Translate into English the following material:
- •Translate the following extract: Microphone transmitter.
- •Introduction to radar fundamentals
- •Give equivalents to the following words and word combinations:
- •Put 10 questions to the text and answer them:
- •Translate into Russian the following text:
- •Translate into English:
- •Read and translate the list of chemical elements with their symbols and atomic number: (in alphabetical order)
- •Translate the following sentences:
- •Translate into Russian:
- •Translate into English:
- •Translate the following information into English:
- •Put 6 questions to the text and answer them:
- •Translate the following sentences in to Russian:
- •Translate the following text and he ready to discuses properties of elements: Chemical properties of elements
- •Vanderwaals radius
- •Ionic radius
- •Isotopes
- •Translate the following text into English using proper terms given below:
- •Classification by Structural Change
- •Classification by Reaction Type
- •Translate into Russian the following sentences:
- •Translate the follow text into Russian:
- •Translate the classification of hydrocarbons into Russian:
- •Reaction Characteristics
- •Factors that Influence Reactions
- •Translate the following information into Russian:
- •Translate the following text into English: Насыщенные углеводороды
- •Translate the following material into Russian:
- •Translate the following sentences into Russian:
- •Translate the following information into Russian:
- •Translate into English:
- •Translate the following text into Russian:
- •Translate the following information into English:
- •Translate the words and word combinations in brackets into English.
- •Give equivalents to the following word combinations:
- •Translate the following text into Russian:
- •Translate into English:
- •Translate into Russian:
- •Be ready to answer questions on the text and talk about the refinery presses.
- •Translate words and word combinations in brackets into English. Translate
- •Give equivalents to the following word combinations:
- •Translate the following text:
- •Translate into English:
- •Translate into Russian:
- •Translate into English:
- •Translate in to English:
- •Interface поверхность раздела; граница
- •Viscosity
- •Translate words and word combinations in brackets into English. Then
- •Translate the following text and be ready to discuss it: crude oil pretreatment (desalting).
- •Electrostatic desalting.
- •Translate the following sentences into Russian:
- •Translate the following information into Russian:
- •Translate the following text into English:
- •Translate the following information into English:
- •Give eqvivalents to the following words and word combinations:
- •Answer the following questions:
- •Translate the following sentences:
- •Translate the following text into English:
- •Translate the following text:
- •Translate into English:
- •Improving the quality of petroleum products
- •Give eqvivalents to the following words and word combinations:
- •Answer the following questions:
- •Translate into Russian:
- •Translate into English:
- •Translate into Russian: The Physics of Oil Refineries
- •Discussion of the refinery process. Prepare the brief report on one of the theme topics.
- •Translate the following sentences:
- •Translate the following text in writing:
- •Introduction to nuclear power
- •Translate the following sentences into Russian:
- •Translate the following text into Russian:
- •Translate the following text into English:
- •Inside the reactor
- •Put some questions to the text and translate them:
- •Translate the following sentences:
- •Translate the following material into English:
- •Translate the following text into Russian:
- •Translate the following text into Russian:
- •Translate the following word combination into Russian:
- •Translate the following sentences into Russian:
- •Translate the following text into English:
- •Translate the following text into English:
- •Translate the following extract into English:
- •Translate the following sentences:
- •Translate the following information into Russian:
- •Translate into Russian:
- •Translate the following information into English:
- •Translate the following information into English:
- •Give equivalents to the terms on the fig.2 using technical dictionaries.
- •Translate into Russian:
- •Translate into Russian:
- •Translate the following information into Russian:
- •Translate into English: Устройство энергетических ядерных реакторов.
- •Put several questions to the text above and answer them:
- •Translate the following text into Russian:
- •Translate the following extract into Russian:
- •To check yourself try to translate the following text at sight:
- •Introduction to the almr/prism
- •Translate the following information into English: хранение ядерного топлива
- •Work area
- •Electrical safety
- •Power tool use and care
- •Service
- •Рабочее место
- •Поддерживайте чистоту и порядок на Вашем рабочем месте.
- •Меры безопасности при подключении к электросети.
- •Указания по безопасности
- •Использование инструмента и уход за ним.
- •Important safety instructions
- •Translate into English:
- •Устройство и принцип работы р ис. 1. Внешний вид аппарата.
- •6 Claims, 5 Drawing Figures exhaust gas recirculation apparatus for engine with turbocharger
- •Read the patent given above, identify its parts and be ready to comment on peculiarities of their translation. 2. Translate the following extract into English:
- •Beltline: The horizontal area of the body along the door just below the side-window glass.
- •Abstract
- •Description
Give equivalents to the terms on the fig.2 using technical dictionaries.
Be ready to talk about the general design and operation of a fission reactor.
Translate into Russian:
Sodium reactor: To enable a nuclear reactor to give off its heat at the highest possible temperature and yet avoid the need for a thick-walled pressure vessel, a substance with a low melting point and a high boiling point can efficiently be used as the heat- transfer medium. A suitable substance for the purpose is the metal sodium. There are, however, some unavoidable drawbacks associated with its use. For this reason, with a sodium-cooled reactor the heat exchanger cannot be directly connected to the primary circuit; a secondary circuit must be interposed. This prevents radioactive material from coming into close proximity to the water that is to be converted to steam. Sodium is usually employed as the coolant for the secondary circuit also. Another problem associated with the use of sodium is its reactivity with water and with atmospheric oxygen. Besides, the presence of even small amounts of sodium dioxide in the heat-transfer medium (coolant) causes a significant increase in corrosive attack of the stainless steel used as the construction material for those parts which come into contact with the sodium.
In comparison with moderator materials, sodium has a relatively large initial cross section for neutrons; for this reason it is necessary to take special precautions to prevent an escape of the sodium from the reactor core and thus avoid a sudden intensification of the chain reaction.
Translate into Russian:
In a typical boiling water reactor the reactor core creates heat and a single loop both delivers steam to the turbine and returns water to the reactor core to cool it. The cooling water is force-circulated by electrically powered pumps. Emergency cooling water is supplied by other pumps, which can be powered by onsite diesel generators. Other safety systems, such as the containment building air coolers, also need electric power.
The core of the reactor is a cylinder 1350mm long and 1570 mm in diameter. The core consists of hexagonal assemblies that are all cooled and enclosed in individual coolant tubes. There are driver fuel, blanket, GEM, control rod, reflector, and USS assemblies (these assemblies are described following this card). The average power density over the entire core is 180 kW/L. The core can run two years between refuelings and each reactor will only be out of service for 18 days. Refueling is accomplished using the In-Vessel Transfer Machine.
The reactor vessel is a cylinder 18.7 m long and 5.7 m in diameter. It will be made of grade 316 stainless steel. The reactor vessel contains the core and most of the reactor components submerged in liquid Sodium. The space above the Sodium but below the top of the reactor vessel is filled with Helium at atmospheric pressure. The core sits in the very bottom of the vessel.
Translate the following information into Russian:
The NRC standard is “as low as reasonably achievable” but no more than 25 mil- lirem a year in additional radiation (above the background exposure in that area) to the average member of a critical, or vulnerable, group. The Environmental Protection Agency has a standard for sites that are chemically contaminated, based on a one-in- a-million chance of an additional cancer. It works out to 15 miliirem per year, with no more than four miliirem of that amount coming from groundwater.
The miliirem is an odd unit to get a handle on. It is not directly a unit of radiation but one of biological damage. It derives from the roentgen, a measure of the ionizing power of gamma rays. But the three dominant types of radiation - alpha, beta and gam- ma-differ in their biological potency; the rem, which is short for “roentgen equivalent man,” integrates the three into a single number.
The NRC asserts that its standard is sufficiently protective. Arguably, 25 miliirem and 10 miliirem are effectively the same. Worse, the significance of even 25 miliirem is largely unknown. The idea that this amount has a health effect is part of a crucial but unproved assumption about radiation exposure - that unlike many chemical hazards,
there is no threshold below which it is harmless. In fact, the mathematical model used to draw up safety regulations assumes that a given increment of exposure, 10,000 ner- son-rem of collective dose, will cause one to eight fatal cancers no matter how applied. This is in contrast to individual dose; without medical treatment, a dose of about 350 rem will kill half of those exposed in what the regulators call “prompt death,” as opposed to the “latent cancer fatalities” from collective doses.
The average American’s annual dose from all sources, including cosmic rays, radon gas and medical x-rays, is about 360 miliirem. That would mean that 25 miliirem from a decommissioned nuclear reactor is nearly an additional one-month dose every year.
