- •Internal combustion engine
- •Give equivalents to the following words and word combinations:
- •Translate the following sentences into Russian:
- •Using the English-Russian dictionary translate the following text
- •Into Russian:
- •IV. Translate the following information into English:
- •Translate the following sentences into Russian:
- •Explain and translate the following definitions of the car body elements:
- •Translate the following information into English:
- •Translate the following information into Russian:
- •Give equivalents to the following words and word combinations:
- •Translate the following sentences into Russian:
- •Translate the following information into English:
- •Translate the following text into Russian:
- •Give equivalents to the following words and word combinations:
- •Translate the following sentences into Russian:
- •Translate the following information into Russian:
- •Translate the following text into Russian:
- •Be ready to talk and discuss the general structure of a ship
- •Uss Nimitz’s catapult 1
- •Translate the following text into English:
- •Inspecting a used car
- •Incandescent lighting - освещение лампами накаливания
- •Answer and translate the following questions:
- •Translate the following sentences:
- •Translate the following text into Russian:
- •IV. Translate the following information into English:
- •Various definitions
- •Decipher and translate the following abbreviations:
- •Answer the following question:
- •Translate the following text into Russian:
- •Translate the following material into English:
- •I. Translate the following sentences:
- •II. Translate the following information in to Russian:
- •Translate the following advertising material into English:
- •Be ready to talk about the power supply at your home.
- •Introduction to power electronics
- •I. Answer the following questions:
- •Translate into English words in brackets and then the sentences
- •Into Russian:
- •Translate the following text: Conductors
- •Translate the following sentences:
- •Translate into English: Теория цепей
- •Translate into Russian: Current supply
- •Give equivalents to the following words and word combinations:
- •Translate and answer the following questions:
- •Translate the following text:
- •Translate the text and be ready to discuss the general radio design:
- •Translate into English the following material:
- •Translate the following extract: Microphone transmitter.
- •Introduction to radar fundamentals
- •Give equivalents to the following words and word combinations:
- •Put 10 questions to the text and answer them:
- •Translate into Russian the following text:
- •Translate into English:
- •Read and translate the list of chemical elements with their symbols and atomic number: (in alphabetical order)
- •Translate the following sentences:
- •Translate into Russian:
- •Translate into English:
- •Translate the following information into English:
- •Put 6 questions to the text and answer them:
- •Translate the following sentences in to Russian:
- •Translate the following text and he ready to discuses properties of elements: Chemical properties of elements
- •Vanderwaals radius
- •Ionic radius
- •Isotopes
- •Translate the following text into English using proper terms given below:
- •Classification by Structural Change
- •Classification by Reaction Type
- •Translate into Russian the following sentences:
- •Translate the follow text into Russian:
- •Translate the classification of hydrocarbons into Russian:
- •Reaction Characteristics
- •Factors that Influence Reactions
- •Translate the following information into Russian:
- •Translate the following text into English: Насыщенные углеводороды
- •Translate the following material into Russian:
- •Translate the following sentences into Russian:
- •Translate the following information into Russian:
- •Translate into English:
- •Translate the following text into Russian:
- •Translate the following information into English:
- •Translate the words and word combinations in brackets into English.
- •Give equivalents to the following word combinations:
- •Translate the following text into Russian:
- •Translate into English:
- •Translate into Russian:
- •Be ready to answer questions on the text and talk about the refinery presses.
- •Translate words and word combinations in brackets into English. Translate
- •Give equivalents to the following word combinations:
- •Translate the following text:
- •Translate into English:
- •Translate into Russian:
- •Translate into English:
- •Translate in to English:
- •Interface поверхность раздела; граница
- •Viscosity
- •Translate words and word combinations in brackets into English. Then
- •Translate the following text and be ready to discuss it: crude oil pretreatment (desalting).
- •Electrostatic desalting.
- •Translate the following sentences into Russian:
- •Translate the following information into Russian:
- •Translate the following text into English:
- •Translate the following information into English:
- •Give eqvivalents to the following words and word combinations:
- •Answer the following questions:
- •Translate the following sentences:
- •Translate the following text into English:
- •Translate the following text:
- •Translate into English:
- •Improving the quality of petroleum products
- •Give eqvivalents to the following words and word combinations:
- •Answer the following questions:
- •Translate into Russian:
- •Translate into English:
- •Translate into Russian: The Physics of Oil Refineries
- •Discussion of the refinery process. Prepare the brief report on one of the theme topics.
- •Translate the following sentences:
- •Translate the following text in writing:
- •Introduction to nuclear power
- •Translate the following sentences into Russian:
- •Translate the following text into Russian:
- •Translate the following text into English:
- •Inside the reactor
- •Put some questions to the text and translate them:
- •Translate the following sentences:
- •Translate the following material into English:
- •Translate the following text into Russian:
- •Translate the following text into Russian:
- •Translate the following word combination into Russian:
- •Translate the following sentences into Russian:
- •Translate the following text into English:
- •Translate the following text into English:
- •Translate the following extract into English:
- •Translate the following sentences:
- •Translate the following information into Russian:
- •Translate into Russian:
- •Translate the following information into English:
- •Translate the following information into English:
- •Give equivalents to the terms on the fig.2 using technical dictionaries.
- •Translate into Russian:
- •Translate into Russian:
- •Translate the following information into Russian:
- •Translate into English: Устройство энергетических ядерных реакторов.
- •Put several questions to the text above and answer them:
- •Translate the following text into Russian:
- •Translate the following extract into Russian:
- •To check yourself try to translate the following text at sight:
- •Introduction to the almr/prism
- •Translate the following information into English: хранение ядерного топлива
- •Work area
- •Electrical safety
- •Power tool use and care
- •Service
- •Рабочее место
- •Поддерживайте чистоту и порядок на Вашем рабочем месте.
- •Меры безопасности при подключении к электросети.
- •Указания по безопасности
- •Использование инструмента и уход за ним.
- •Important safety instructions
- •Translate into English:
- •Устройство и принцип работы р ис. 1. Внешний вид аппарата.
- •6 Claims, 5 Drawing Figures exhaust gas recirculation apparatus for engine with turbocharger
- •Read the patent given above, identify its parts and be ready to comment on peculiarities of their translation. 2. Translate the following extract into English:
- •Beltline: The horizontal area of the body along the door just below the side-window glass.
- •Abstract
- •Description
Isotopes
The atomic number does not determine the number of neutrons in an atomic core. As a result, the number of neutrons within an atom can vary. As a result, atoms that have the same atomic number may differ in atomic mass. Atoms of the same element that differ in atomic mass are called isotopes. Mainly with the heavier atoms that have a higher atomic number, the number of neutrons within the core may exceed the number of protons. Isotopes of the same element are often found in nature alternately or in mixtures.
An example: chlorine has an atomic number of 17, which basically means that all chlorine atoms contain 17 protons within their core. There are two isotopes. Three-quarters of the chlorine atoms found in nature contain 18 neutrons and one quarter contains 20 neutrons. The mass numbers of these isotopes are 17 + 18 = 35 and 17 + 20 = 37. The isotopes are written as follows: 35C1 and 37C1. When isotopes are noted this way the number of protons and neutrons does not have to be mentioned separately, because the symbol of chlorine within the periodic chart (Cl) is set on the seventeenth place. This already indicates the number of protons, so that one can always calculate the number of neutrons easily by means of the mass number.
A great number of isotopes is not stable. They will fall apart during radioactive decay processes. Isotopes that are radioactive are called radioisotopes.
Electronic shell
The electronic configuration of an atom is a description of the arrangement of electrons in circles around the core. These circles are not exactly round; they contain a wave-like pattern. For each circle the probability of an electron to be present on a certain location is described by a mathematic formula. Each one of the circles has a certain level of energy, compared to the core. Commonly the energy levels of electrons are higher when they are further away from the core, but because of their charges, electrons can also influence each another’s energy levels. Usually the middle circles are filled up first, but there may be exceptions due to rejections. The circles are divided up in shells and sub shells, which can be numbered by means of quantities.
Energy of first ionization
The ionization energy means the energy that is required to make a free atom or molecule lose an electron in a vacuum. In other words; the energy of ionisation is a measure for the strength of electron bonds to molecules. This concerns only the electrons in the outer circle.
Besides the energy of the first ionization, which indicates how difficult it is to remove the first electron from an atom, there is also an energy measure for second ionization. This energy of second ionization indicates the degree of difficulty to remove the second atom.
As such, there is also the energy of a third ionization, and sometimes even the energy of a fourth or fifth ionization.
Translate the following text into English using proper terms given below:
Что такое сырая нефть? Нефть - это не химический элемент, а смесь соединений.
Интересные свойства нефти проявляются при нагревании. Если нагреть нефть до температуры кипения и выдержать ее в этом состоянии некоторое время, то она испарится, но не полностью.
Для сравнения возьмем воду. Нагреем сосуд с водой до 100° С. Если продолжить нагрев, то вода начнет испаряться и через некоторое время выкипит полностью. И температура при этом сохранится на прежнем уровне.
Чтобы всё стало понятно, возьмём тот же сосуд и заполним его сырой нефтью средней плотности. Начнем нагревать нефть. Когда температура достигнет 65°
С, сырая нефть закипит. Мы продолжаем нагревание, но при этом поддерживаем температуру на том же уровне. Через некоторое время нефть перестанет кипеть.
Следующий шаг - поднять температуру до 230°С. Нефть начнет испаряться вновь, но спустя несколько минут испарение прекратится. Процесс нужно продолжать, параллельно повышая температуру нагрева (т.е. до 65, 230, 400 и 480°С).
Это подтверждает сложный состав сырой нефти, которая состоит из определённых сочетаний атомов углерода и водорода, и которые называются углеводородами. Каждое из этих соединений характеризуется своей собственной температурой кипения.
Вот на этом основывается процесс переработки сырой нефти, называемый нефтепегонкой. Но при выходе из нефтяной скважины нефть содержит частицы горных пород, воду, а также растворенные в ней соли и газы. Эти примеси вызывают коррозию оборудования и серьезные затруднения при транспортировке и переработке нефтяного сырья. Таким образом, для экспорта или доставки в отдаленные от мест добычи нефтеперерабатывающие заводы необходима ее промышленная обработка: из нее удаляется вода, механические примеси, соли и твердые углеводороды, выделяется газ.
Terms and word combinations:
Impurity, processing, vessel, rock particles, crude oil, oil well, chemical compound, refinery plant, oil distillation, oil extraction, solid hydrocarbons, compound mixture, boiling temperature
LESSON # 3
CHEMICAL REACTIVITY
Organic chemistry encompasses a very large number of compounds (many millions).
We begin by defining some basic terms that will be used frequently as this subject is elaborated.
Chemical Reaction: A transformation resulting in a change of composition, constitution and/or configuration of a compound (referred to as the reactant or substrate).
Reactant or Substrate: The organic compound undergoing change in a chemical reaction. Other compounds may also be involved, and common reactive partners (reagents) may be identified. The reactant is often (but not always) the larger and more complex molecule in the reacting system. Most (or all) of the reactant molecule is normally incorporated as part of the product molecule.
Reagent: A common partner of the reactant in many chemical reactions. It may be organic or inorganic; small or large; gas, liquid or solid. The portion of a reagent that ends up being incorporated in the product may range from all to very little or none
Product(s) The final form taken by the major reactant(s) of a reaction.
R
eaction
Conditions The
environmental conditions, such as temperature, pressure,
catalysts & solvent, under which a reaction progresses optimally.
Catalysts are substances that accelerate the rate (velocity) of a
chemical reaction without themselves being consumed or appearing as
part of the reaction product. Catalysts do not change equilibria
positions.
Chemical reactions are commonly Reagent (s)
written as equations: Reactant (s) —► Product (s)
' Г Reaction ] v '
LConditiors J
Classifying Organic Chemical Reactions
If you scan any organic textbook you will encounter what appears to be a very large, often intimidating, number of reactions. These are the “tools” of a chemist, and to use these tools effectively, we must organize them in a sensible manner and look for patterns of reactivity that permit us make plausible predictions. Most of these reactions occur at special sites of reactivity known as functional groups, and these constitute one organizational scheme that helps us catalog and remember reactions.
Ultimately, the best way to achieve proficiency in organic chemistry is to understand how reactions take place, and to recognize the various factors that influence their course. This is best accomplished by perceiving the reaction pathway or mechanism of a reaction.
