- •А.А. Григорьев введение в авиационную и ракетную технику
- •160700 «Проектирование авиационных и ракетных двигателей»
- •160700 «Двигатели летательных аппаратов»
- •Введение
- •1. Летательные аппараты
- •1.1. Основы теории полета и управления ла
- •1.1.1. Аэродинамические силы
- •1.1.2. Аэродинамические характеристики крыла
- •1.1.3. Равновесие самолета
- •1.1.4. Устойчивость самолета
- •1.1.5. Управление самолетом в полете
- •1.1.5.1. Обеспечение продольной управляемости самолета
- •1.1.5.2. Обеспечение путевой (по направлению) управляемости самолета
- •1.1.5.3. Обеспечение поперечной (по крену) управляемости самолета
- •1.1.5.4. Неустойчивый режим полета (штопор)
- •1.2. Основы конструкции самолета
- •1.2.1. Основные составные части самолета
- •1.2.1.1. Крыло
- •1.2.1.2. Фюзеляж
- •1.2.1.3. Оперение
- •1.2.1.4. Энергетическая система ла
- •1.2.2. Классификация самолетов
- •1.2.2.1. Гражданские самолеты
- •1.2.2.2. Военные самолеты
- •1.2.3. Самолеты нетрадиционных аэродинамических схем
- •1.2.3.1. Самолеты схемы «утка»
- •1.33. Утка в полете
- •1.2.3.2. Самолеты схемы «бесхвостка»
- •1.2.3.3. Самолеты с крылом обратной стреловидности
- •1.2.4. Ла различных типов
- •1.2.4.1. Экраноплан
- •1.2.4.2. Вертолет
- •1.2.4.4. Автожир
- •1.2.4.5. Ла вертикального и короткого взлета и посадки
- •1.2.4.6. Ла сверхзвуковых и гиперзвуковых скоростей полета
- •1.2.4.7. Ракеты
- •1.2.4.8. Космические летательные аппараты
- •Контрольные вопросы:
- •2.2. Классификация реактивных двигателей
- •2.3. Принцип работы турбореактивного двигателя (трд)
- •2.3.1. Преимущества трд перед поршневой су
- •2.3.2. Принцип создания тяги трд
- •2.3.3. Энергетические превращения и изменение параметров
- •2.3.4. Вывод формулы для определения тяги трд
- •2.4. Основные параметры трд
- •2.5. Области применения реактивных двигателей
- •2.6. История развития авиационных врд
- •2.7. Идеальный цикл трд
- •2.7.1. Сущность второго закона термодинамики
- •2.7.2. Условия и диаграммы идеального цикла
- •2.7.3. Работа идеального цикла
- •2.7.4. Термический кпд идеального цикла
- •2.8. Характеристика врд различных типов
- •2.8.1. Трд с дополнительным подогревом воздуха (трдф)
- •2.8.2. Двухвальный трд
- •2.8.3. Двухконтурный трд (трдд)
- •2.8.4. Турбовальные (тВаД) и турбовинтовые (твд) двигатели
- •Преимущества и недостатки одновальных твд и тВаД
- •Особенности конструкции тВаД со свободной турбиной
- •Основные параметры твд
- •Основные параметры тВаД:
- •2.8.5. Прямоточные врд (пврд)
- •2.8.6. Турбопрямоточные врд (тпд)
- •2.8.7. Двигатель изменяемого рабочего процесса (дирп)
- •2.9. Наземное применение авиационных газотурбинных двигателей (гтд)
- •2.10. Топлива, применяемые в врд
- •2.11. Ракетные двигатели (рд)
- •2.11.1. Классификация рд по источнику энергии
- •2.11.1.1. Создание тяги в химическом рд
- •2.11.1.2. Расходный комплекс рд
- •2.11.1.2. Тяговый комплекс рд
- •2.11.2. Ракетные топлива (рт)
- •2.11.2.1 Жидкие ракетные топлива (жрт)
- •2.11.2.2. Твердые ракетные топлива (трт)
- •2.11.3. Жидкостные рд (жрд)
- •2.11.3.1. Классификация жрд
- •2.11.3.2. Принципиальные схемы жрд
- •2.11.3.3. Особенности конструкции жрд
- •2.11.4. Ракетный двигатель твердого топлива (рдтт)
- •Оглавление
- •1. Летательные аппараты……………………………………………………………….23
- •2. Энергетические установки ла……………………………………………………….71
- •Библиографический список
2.11. Ракетные двигатели (рд)
2.11.1. Классификация рд по источнику энергии
Ракетный двигатель (РД) – это реактивный двигатель, использующий для работы только вещества – источники энергии, находящиеся на борту ЛА с РД.
Принцип действия РД заключается в преобразовании какого-либо вида энергии в кинетическую энергию струи газа, истекающего из сопла, с последующей передачей этой энергии ЛА в соответствие со вторым законом Ньютона.
По источнику энергии РД делятся на:
Химические РД – тяга создается за счет разгона газообразных продуктов сгорания компонентов химического топлива до cc = 2000…4500 м/с.
В данном типе РД источники энергии и рабочего тела совмещены, то есть энергия, выделяемая при сгорании химического топлива сообщается продуктам сгорания этого же топлива.
Ядерные РД – нагрев и испарение рабочего тела (например – воды) за счет тепла, выделяемого в ядерном реакторе и разгон перегретого пара до cc = 10000…20000 м/с.
В данном типе РД источники энергии и рабочего тела разделены, так как продукты превращений ядерного топлива не используются в качестве рабочего тела в виду малости их массы и опасности заражения окружающей среды. Используется специальное рабочее тело.
Электрические РД – тяга создается за счет разгона заряженного газа (плазмы), получаемого в генераторе плазмы или в ионизационной камере в электрическом поле электромагнитного или электростатического ускорителя до cc ≈ 200000 м/с.
В данном типе РД источники энергии и рабочего тела так же разделены.
Реактивные двигатели с тепловым ускорением (ядерные и химические) имеют скорость истечения реактивной струи, ограниченную величиной тепловой скорости молекул. Для химических РД ограничение обусловлено природой топлива, для ядерных – температурой нагрева рабочего тела, максимально допустимой для конструкции.
Химические и ядерные РД имеют относительно небольшую удельную массу (отношение массы двигателя к развиваемой им максимальной тяге) и способные сообщать летательным аппаратам значительные ускорения по сравнению с ускорением свободного падения у поверхности Земли. Однако, в связи с относительно небольшой скоростью истечения, создание тяги сопровождается большим расходом рабочего тела на единицу тяги, ограничивающим время работы РД. Этим определяется основная задача, выполняемая такими двигателями: ускорение тяжелых аппаратов до больших космических скоростей в околопланетных и межпланетных полетах при относительно непродолжительной работе двигателей.
В электрических ракетных двигателях (ЭРД) скорость истечения на порядок выше, чем в ядерных, и ограничена мощностью электроустановки, увеличение которой влечет за собой существенное увеличение массы конструкции. Малый массовый расход, обусловленный природой рабочего тела (плазма) не позволяет создавать тягу большой величины, но увеличивает время работы РД.
Применение ЭРД в качестве основных двигателей возможно после сообщения летательному аппарату первой космической скорости. Возможность длительной работы ЭРД может обеспечить дальние космические перелеты. ЭРД так же могут использоваться в качестве вспомогательных двигателей.
