- •А.А. Григорьев введение в авиационную и ракетную технику
- •160700 «Проектирование авиационных и ракетных двигателей»
- •160700 «Двигатели летательных аппаратов»
- •Введение
- •1. Летательные аппараты
- •1.1. Основы теории полета и управления ла
- •1.1.1. Аэродинамические силы
- •1.1.2. Аэродинамические характеристики крыла
- •1.1.3. Равновесие самолета
- •1.1.4. Устойчивость самолета
- •1.1.5. Управление самолетом в полете
- •1.1.5.1. Обеспечение продольной управляемости самолета
- •1.1.5.2. Обеспечение путевой (по направлению) управляемости самолета
- •1.1.5.3. Обеспечение поперечной (по крену) управляемости самолета
- •1.1.5.4. Неустойчивый режим полета (штопор)
- •1.2. Основы конструкции самолета
- •1.2.1. Основные составные части самолета
- •1.2.1.1. Крыло
- •1.2.1.2. Фюзеляж
- •1.2.1.3. Оперение
- •1.2.1.4. Энергетическая система ла
- •1.2.2. Классификация самолетов
- •1.2.2.1. Гражданские самолеты
- •1.2.2.2. Военные самолеты
- •1.2.3. Самолеты нетрадиционных аэродинамических схем
- •1.2.3.1. Самолеты схемы «утка»
- •1.33. Утка в полете
- •1.2.3.2. Самолеты схемы «бесхвостка»
- •1.2.3.3. Самолеты с крылом обратной стреловидности
- •1.2.4. Ла различных типов
- •1.2.4.1. Экраноплан
- •1.2.4.2. Вертолет
- •1.2.4.4. Автожир
- •1.2.4.5. Ла вертикального и короткого взлета и посадки
- •1.2.4.6. Ла сверхзвуковых и гиперзвуковых скоростей полета
- •1.2.4.7. Ракеты
- •1.2.4.8. Космические летательные аппараты
- •Контрольные вопросы:
- •2.2. Классификация реактивных двигателей
- •2.3. Принцип работы турбореактивного двигателя (трд)
- •2.3.1. Преимущества трд перед поршневой су
- •2.3.2. Принцип создания тяги трд
- •2.3.3. Энергетические превращения и изменение параметров
- •2.3.4. Вывод формулы для определения тяги трд
- •2.4. Основные параметры трд
- •2.5. Области применения реактивных двигателей
- •2.6. История развития авиационных врд
- •2.7. Идеальный цикл трд
- •2.7.1. Сущность второго закона термодинамики
- •2.7.2. Условия и диаграммы идеального цикла
- •2.7.3. Работа идеального цикла
- •2.7.4. Термический кпд идеального цикла
- •2.8. Характеристика врд различных типов
- •2.8.1. Трд с дополнительным подогревом воздуха (трдф)
- •2.8.2. Двухвальный трд
- •2.8.3. Двухконтурный трд (трдд)
- •2.8.4. Турбовальные (тВаД) и турбовинтовые (твд) двигатели
- •Преимущества и недостатки одновальных твд и тВаД
- •Особенности конструкции тВаД со свободной турбиной
- •Основные параметры твд
- •Основные параметры тВаД:
- •2.8.5. Прямоточные врд (пврд)
- •2.8.6. Турбопрямоточные врд (тпд)
- •2.8.7. Двигатель изменяемого рабочего процесса (дирп)
- •2.9. Наземное применение авиационных газотурбинных двигателей (гтд)
- •2.10. Топлива, применяемые в врд
- •2.11. Ракетные двигатели (рд)
- •2.11.1. Классификация рд по источнику энергии
- •2.11.1.1. Создание тяги в химическом рд
- •2.11.1.2. Расходный комплекс рд
- •2.11.1.2. Тяговый комплекс рд
- •2.11.2. Ракетные топлива (рт)
- •2.11.2.1 Жидкие ракетные топлива (жрт)
- •2.11.2.2. Твердые ракетные топлива (трт)
- •2.11.3. Жидкостные рд (жрд)
- •2.11.3.1. Классификация жрд
- •2.11.3.2. Принципиальные схемы жрд
- •2.11.3.3. Особенности конструкции жрд
- •2.11.4. Ракетный двигатель твердого топлива (рдтт)
- •Оглавление
- •1. Летательные аппараты……………………………………………………………….23
- •2. Энергетические установки ла……………………………………………………….71
- •Библиографический список
2.10. Топлива, применяемые в врд
Топливо авиационное – вводимое вместе с воздухом в камеру сгорания двигателя летательного аппарата (ЛА) для получения тепловой энергии в процессе окисления кислородом воздуха (сжигания).
В ВРД используются реактивные топлива, вырабатываемые из среднедисциллятных фракций нефти, выкипающих при температуре 140 – 280 о С. По способу получения реактивные топлива делятся на прямопергонные и гидрогенизационные. Первые (Т-1, ТС-1, Т-2) получаются непосредственно из отогнанных фракций нефти без их глубокой переработки. Технология получения вторых включает такие процессы, как гидроочистку (РТ, Т-8В, Т-6), глубокое гидрирование (Т-6), гидрокрекинг (Т-8В). При гидроочистке из нефтяного дисциллята удаляются агрессивные и содержащие серу, азот и кислород нестабильные соединения практически без изменения углеводородного состава топлива. При гидрокрекинге и гидрировании наряду с очисткой исходного сырья происходит изменение его углеводородного состава.
Применение гидрогенизации процессов при производстве реактивных топлив позволяет расширить сырьевую базу топлив и значительно повысить их термостабильность.
К качеству реактивных топлив предъявляются следующие требования:
высокая теплотворная способность Hu (количество тепла, выделяющееся при полном сгорании 1 кг топлива). Hu = (43100…43900) кДж/кг или (10300…10500) кал/кг – весовая теплотворная способность (авиационный керосин);
низкая температура начала кристаллизации (менее – 60 оС);
низкая вязкость при минусовых температурах;
высокая термостойкость;
высокие антикоррозионные свойства;
отсутствие нагарообразования;
большой срок хранения;
отсутствие воды и механических примесей;
широкий эксплуатационный диапазон температур и давлений;
хорошие пусковые свойства (надежный запуск при низких температурах окружающей среды);
высокая плотность (возможность взять бóльшую массу топлива в ограниченный объем баков).
Наиболее удовлетворяют предъявленным требованиям авиационные керосины:
ТС-1, РТ – обладают средним и высоким уровнем термической стабильности (≤ 100…120 оС) и являются наилучшими топливами для ВРД дозвуковой авиационной техники (АТ) (с небольшой продолжительностью сверхзвукового полета).
Т-2 – обладает средним уровнем термической стабильности (≤ 100 оС). Имеет более низкую, чем у ТС-1 и РТ, плотность и более высокую теплотворную способность, а также более высокую коррозионную активность при лучших пусковых свойствах (выше испаряемость). Т-2 является резервным по отношению к топливу ТС-1 и применяется в ВРД дозвуковой АТ (с небольшой продолжительностью сверхзвукового полета) в районах с низкой температурой воздуха и как резервное топливо взамен ТС-1 и РТ.
Т-6 – имеет более высокую, чем у ТС-1, РТ и Т-2, плотность и более низкую теплотворную способность вследствие чего обладает меньшей коррозионной активностью и худшими пусковыми свойствами при низких температурах (ниже испаряемость). Имеет высокий уровень термической стабильности (≤ 300 оС) и применяется в сверхзвуковой АТ.
Т-8В характеризуется повышенной плотностью и высокой термостабильностью и является резервным по отношению к топливам РТ и Т-6.
Низшая теплотворная способность Hu для ТС-1, РТ, Т-2, Т-6 находится в диапазоне – (42900… 43300) кДж/кг.
В ТВаД наземного применения в качестве топлива используют природный (топливный) газ с Hu ≈ 45640 (бутан) …50060 (метан) кДж/кг.
Для работы гиперзвуковых прямоточных двигателей планируется применять криогенное топливо на основе жидкого водорода.
