- •А.А. Григорьев введение в авиационную и ракетную технику
- •160700 «Проектирование авиационных и ракетных двигателей»
- •160700 «Двигатели летательных аппаратов»
- •Введение
- •1. Летательные аппараты
- •1.1. Основы теории полета и управления ла
- •1.1.1. Аэродинамические силы
- •1.1.2. Аэродинамические характеристики крыла
- •1.1.3. Равновесие самолета
- •1.1.4. Устойчивость самолета
- •1.1.5. Управление самолетом в полете
- •1.1.5.1. Обеспечение продольной управляемости самолета
- •1.1.5.2. Обеспечение путевой (по направлению) управляемости самолета
- •1.1.5.3. Обеспечение поперечной (по крену) управляемости самолета
- •1.1.5.4. Неустойчивый режим полета (штопор)
- •1.2. Основы конструкции самолета
- •1.2.1. Основные составные части самолета
- •1.2.1.1. Крыло
- •1.2.1.2. Фюзеляж
- •1.2.1.3. Оперение
- •1.2.1.4. Энергетическая система ла
- •1.2.2. Классификация самолетов
- •1.2.2.1. Гражданские самолеты
- •1.2.2.2. Военные самолеты
- •1.2.3. Самолеты нетрадиционных аэродинамических схем
- •1.2.3.1. Самолеты схемы «утка»
- •1.33. Утка в полете
- •1.2.3.2. Самолеты схемы «бесхвостка»
- •1.2.3.3. Самолеты с крылом обратной стреловидности
- •1.2.4. Ла различных типов
- •1.2.4.1. Экраноплан
- •1.2.4.2. Вертолет
- •1.2.4.4. Автожир
- •1.2.4.5. Ла вертикального и короткого взлета и посадки
- •1.2.4.6. Ла сверхзвуковых и гиперзвуковых скоростей полета
- •1.2.4.7. Ракеты
- •1.2.4.8. Космические летательные аппараты
- •Контрольные вопросы:
- •2.2. Классификация реактивных двигателей
- •2.3. Принцип работы турбореактивного двигателя (трд)
- •2.3.1. Преимущества трд перед поршневой су
- •2.3.2. Принцип создания тяги трд
- •2.3.3. Энергетические превращения и изменение параметров
- •2.3.4. Вывод формулы для определения тяги трд
- •2.4. Основные параметры трд
- •2.5. Области применения реактивных двигателей
- •2.6. История развития авиационных врд
- •2.7. Идеальный цикл трд
- •2.7.1. Сущность второго закона термодинамики
- •2.7.2. Условия и диаграммы идеального цикла
- •2.7.3. Работа идеального цикла
- •2.7.4. Термический кпд идеального цикла
- •2.8. Характеристика врд различных типов
- •2.8.1. Трд с дополнительным подогревом воздуха (трдф)
- •2.8.2. Двухвальный трд
- •2.8.3. Двухконтурный трд (трдд)
- •2.8.4. Турбовальные (тВаД) и турбовинтовые (твд) двигатели
- •Преимущества и недостатки одновальных твд и тВаД
- •Особенности конструкции тВаД со свободной турбиной
- •Основные параметры твд
- •Основные параметры тВаД:
- •2.8.5. Прямоточные врд (пврд)
- •2.8.6. Турбопрямоточные врд (тпд)
- •2.8.7. Двигатель изменяемого рабочего процесса (дирп)
- •2.9. Наземное применение авиационных газотурбинных двигателей (гтд)
- •2.10. Топлива, применяемые в врд
- •2.11. Ракетные двигатели (рд)
- •2.11.1. Классификация рд по источнику энергии
- •2.11.1.1. Создание тяги в химическом рд
- •2.11.1.2. Расходный комплекс рд
- •2.11.1.2. Тяговый комплекс рд
- •2.11.2. Ракетные топлива (рт)
- •2.11.2.1 Жидкие ракетные топлива (жрт)
- •2.11.2.2. Твердые ракетные топлива (трт)
- •2.11.3. Жидкостные рд (жрд)
- •2.11.3.1. Классификация жрд
- •2.11.3.2. Принципиальные схемы жрд
- •2.11.3.3. Особенности конструкции жрд
- •2.11.4. Ракетный двигатель твердого топлива (рдтт)
- •Оглавление
- •1. Летательные аппараты……………………………………………………………….23
- •2. Энергетические установки ла……………………………………………………….71
- •Библиографический список
2.8.7. Двигатель изменяемого рабочего процесса (дирп)
Идеальный ВРД должен трансформироваться в ВРД различных типов в зависимости от высоты и скорости полета.
ДИРП – это авиационный ВРД в котором, путем широкого регулирования элементов проточного тракта, а так же применением дополнительных узлов, отключаемых и переключаемых в процессе работы, осуществляется адаптация режима работы двигателя к условиям полета в широком диапазоне скоростей V и высот H полета.
ДИРП находится в стадии экспериментальных разработок и призван сочетать достоинства всех схем ВРД.
2.9. Наземное применение авиационных газотурбинных двигателей (гтд)
Параллельно с развитием авиационных ГТД началось применение ГТД в промышленности и на транспорте. В 1939 г. Швейцарская фирма A.G. Brown Bonery ввела в эксплуатацию первую электростанцию с газотурбинным приводом мощностью 4 МВт и КПД 17,4 %, которая находится в работоспособном состоянии и в настоящее время. В 1941 г. вступил в строй первый железнодорожный газотурбовоз, оборудованный ГТД мощностью 1620 кВт (2200 л.с.) этой же фирмы. С конца 1940-х г.г. прошлого века ГТД начинают применяться для привода морских судовых движителей, а c конца 1950-х г.г. – в составе газоперекачивающих агрегатов на магистральных газопроводах для привода нагнетателей природного газа.
Быстрому внедрению ГТД в различные отрасли промышленности и транспорта способствовали неоспоримые преимущества этого класса тепловых двигателей перед другими энергетическими установками (паротурбинными, дизельными и др.):
- большая мощность в одном агрегате;
- компактность, малая масса (рис. 2.24);
- уравновешенность движущихся элементов;
- широкий диапазон применяемых топлив;
- легкий и быстрый запуск, в том числе при низких температурах;
- хорошие тяговые характеристики;
- высокая приемистость и хорошая управляемость.
Рис.2.24. Сравнение габаритных размеров ГТД и дизельного
двигателя мощностью 3 МВт
Н
Рис. 2.25. Применение ГТД для прямого
привода нагнетателя природного газа
Основная особенность перечисленного приводимого оборудования – зависимость потребляемой мощности N от частоты вращения n, температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменной частотой вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной – турбовальные двигатели (ТВаД).
ГТД для привода электрогенераторов используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих «чистую» электроэнергию, а также в составе когенерационных установок (в российской литературе они часто называются «ГТУ-ТЭЦ»), производящих совместно электрическую и тепловую энергию (рис. 2.26).
Рис. 2.26. Принципиальная схема газотурбинной
электростанции
Современные ГТЭС простого цикла (рис. 2.27), имеющие относительно умеренный электрический КПД эл = 25…40 %, в основном используются в пиковом режиме эксплуатации – для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуются высокой цикличностью (большим количеством циклов «пуск-нагружение-работа под нагрузкой-останов»). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме.
Э
Рис. 2.27. Электростанция «Урал-2500»
В когенерационных установках тепло выхлопных газов ГТД используется в котле- утилизаторе для производства горячей воды и (или) пара для технологических нужд или для использования в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90%.
Электростанции комбинированного парогазового цикла и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами.
Основная особенность ГТД для привода электрогенераторов – постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального) и высокие требования к точности поддержания частоты вращения, от которой зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике.
