- •А.А. Григорьев введение в авиационную и ракетную технику
- •160700 «Проектирование авиационных и ракетных двигателей»
- •160700 «Двигатели летательных аппаратов»
- •Введение
- •1. Летательные аппараты
- •1.1. Основы теории полета и управления ла
- •1.1.1. Аэродинамические силы
- •1.1.2. Аэродинамические характеристики крыла
- •1.1.3. Равновесие самолета
- •1.1.4. Устойчивость самолета
- •1.1.5. Управление самолетом в полете
- •1.1.5.1. Обеспечение продольной управляемости самолета
- •1.1.5.2. Обеспечение путевой (по направлению) управляемости самолета
- •1.1.5.3. Обеспечение поперечной (по крену) управляемости самолета
- •1.1.5.4. Неустойчивый режим полета (штопор)
- •1.2. Основы конструкции самолета
- •1.2.1. Основные составные части самолета
- •1.2.1.1. Крыло
- •1.2.1.2. Фюзеляж
- •1.2.1.3. Оперение
- •1.2.1.4. Энергетическая система ла
- •1.2.2. Классификация самолетов
- •1.2.2.1. Гражданские самолеты
- •1.2.2.2. Военные самолеты
- •1.2.3. Самолеты нетрадиционных аэродинамических схем
- •1.2.3.1. Самолеты схемы «утка»
- •1.33. Утка в полете
- •1.2.3.2. Самолеты схемы «бесхвостка»
- •1.2.3.3. Самолеты с крылом обратной стреловидности
- •1.2.4. Ла различных типов
- •1.2.4.1. Экраноплан
- •1.2.4.2. Вертолет
- •1.2.4.4. Автожир
- •1.2.4.5. Ла вертикального и короткого взлета и посадки
- •1.2.4.6. Ла сверхзвуковых и гиперзвуковых скоростей полета
- •1.2.4.7. Ракеты
- •1.2.4.8. Космические летательные аппараты
- •Контрольные вопросы:
- •2.2. Классификация реактивных двигателей
- •2.3. Принцип работы турбореактивного двигателя (трд)
- •2.3.1. Преимущества трд перед поршневой су
- •2.3.2. Принцип создания тяги трд
- •2.3.3. Энергетические превращения и изменение параметров
- •2.3.4. Вывод формулы для определения тяги трд
- •2.4. Основные параметры трд
- •2.5. Области применения реактивных двигателей
- •2.6. История развития авиационных врд
- •2.7. Идеальный цикл трд
- •2.7.1. Сущность второго закона термодинамики
- •2.7.2. Условия и диаграммы идеального цикла
- •2.7.3. Работа идеального цикла
- •2.7.4. Термический кпд идеального цикла
- •2.8. Характеристика врд различных типов
- •2.8.1. Трд с дополнительным подогревом воздуха (трдф)
- •2.8.2. Двухвальный трд
- •2.8.3. Двухконтурный трд (трдд)
- •2.8.4. Турбовальные (тВаД) и турбовинтовые (твд) двигатели
- •Преимущества и недостатки одновальных твд и тВаД
- •Особенности конструкции тВаД со свободной турбиной
- •Основные параметры твд
- •Основные параметры тВаД:
- •2.8.5. Прямоточные врд (пврд)
- •2.8.6. Турбопрямоточные врд (тпд)
- •2.8.7. Двигатель изменяемого рабочего процесса (дирп)
- •2.9. Наземное применение авиационных газотурбинных двигателей (гтд)
- •2.10. Топлива, применяемые в врд
- •2.11. Ракетные двигатели (рд)
- •2.11.1. Классификация рд по источнику энергии
- •2.11.1.1. Создание тяги в химическом рд
- •2.11.1.2. Расходный комплекс рд
- •2.11.1.2. Тяговый комплекс рд
- •2.11.2. Ракетные топлива (рт)
- •2.11.2.1 Жидкие ракетные топлива (жрт)
- •2.11.2.2. Твердые ракетные топлива (трт)
- •2.11.3. Жидкостные рд (жрд)
- •2.11.3.1. Классификация жрд
- •2.11.3.2. Принципиальные схемы жрд
- •2.11.3.3. Особенности конструкции жрд
- •2.11.4. Ракетный двигатель твердого топлива (рдтт)
- •Оглавление
- •1. Летательные аппараты……………………………………………………………….23
- •2. Энергетические установки ла……………………………………………………….71
- •Библиографический список
2.5. Области применения реактивных двигателей
О
Рис. 2.5. Области применения различных
типов РД
Наименьшую скорость полета имеют вертолеты с ТВаД, за ними следуют самолеты с ТВД, имеющие ограничения скорости из-за использования в качестве движителя воздушного винта. У самолетов с двигателями прямой реакции (ТРД) ограничение скорости полета наступает из-за «вырождении» двигателя.
При увеличении
высоты полета, с уменьшением плотности
воздуха ρ уменьшается скоростной напор
q
= ρV2/2,
а значит, падает подъемная сила
.
Для осуществления горизонтального
полета ЛА (Y
= GЛА)
на бóльшей высоте, необходимо
увеличить скорость полета V
При больших
сверхзвуковых и гиперзвуковых скоростях
полета
происходит значительный аэродинамический
нагрев элементов конструкции ЛА и
снижается прочность конструкциионных
материалов, а динамические нагрузки
возрастают. Возникает необходимость
ограничения скорости и высоты полета.
2.6. История развития авиационных врд
Газотурбинные двигатели (ГТД) во 2-й половине ХХ века стали доминирующими в военной и гражданской авиации, как обеспечившие значительно бóльшие отношения тяги к массе двигателя по сравнению с предшествовавшими поршневыми двигателями.
Применение газотурбинных двигателей позволило совершить качественный скачок в грузоподъемности авиации, высоте и скорости полета, освоить сверхзвуковые полеты с числом Маха до 3,0…3,3.
Несмотря на то, что принципиальные схемы турбовинтовых и турбореактивных двигателей были предложены в ряде стран еще в первой четверти ХХ века, они могли быть реализованы как эффективные и надежные двигатели лишь после Второй Мировой войны как синтез достижений одновременно и в аэродинамическом совершенстве лопаточных машин, и в металлургии.
Речь идет о
достаточных коэффициентах полезного
действия
компрессоров и турбин и длительной
термопрочности конструкционных
материалов, допускающей достаточно
высокий уровень температуры газа перед
турбиной.
Наиболее серьезными новыми проблемами, которые пришлось преодолевать всем конструкторам-первопроходцам при создании турбореактивных двигателей были также:
- организация устойчивого горения;
- вибропрочность лопаток компрессоров и турбин;
- помпаж компрессора;
- высокий удельный расход топлива;
- психологический фактор недоверия.
Создание турбореактивных двигателей различных схем нельзя приписать одному изобретателю или одной стране, их создание является результатом исследований и экспериментов, начатых почти одновременно в ряде развитых государств.
Не умаляя роли передовых промышленных стран, таких как Германия и Англия, в создании первых газотурбинных авиационных двигателей, следует отметить достойный вклад русских ученых и инженеров в создание и развитие авиационной газотурбинной техники.
Основополагающими теоретическими разработками в области реактивного движения и лопаточных машин были еще дореволюционные труды ученых И.В. Мещерского, Н.Е. Жуковского, К.Э. Циолковского. К началу ХХ века относятся первые проекты ГТД русских инженеров: П. Кузьминского (1900г.), В. Караводина (1908г.), Н. Герасимова (1909г.), А. Горохова (1911г.), М. Никольского (1914г.). Однако в дореволюционной России не появились какие-либо серийные авиационные двигатели собственной разработки.
После 1917 года развитию авиации со стороны государства уделялось повышенное внимание. 22 мая 1919г. в ЦАГИ было создано винтомоторное отделение во главе с инженером-механиком Б.С.Стечкиным.
Уже в 1929г. Б.С. Стечкин (племянник Н.Е. Жуковского)
разработал и опубликовал теорию воздушно-реактивного двигателя, получившую всеобщее признание в нашей стране и за рубежом. В 1923г. инженер-конструктор В.И. Базаров подал заявку на вполне современную схему одновального ТРД с центробежным компрессором.
В 1925г. преподаватели МВТУ Н.Р. Бриллинг и В.В. Уваров обосновали возможность создания мощного авиационного ТВД и приступили к его проектированию.
В
Уваров В.В.
Стечкин Б.С.
ГТУ-3 имел три
центробежные ступени компрессора с
=8
и двухступенчатую осевую турбину,
охлаждаемую дистиллированной водой,
так как расчетная температура газа
перед турбиной была 1470 K.
В 1940г. группу В.В. Уварова перевели в ЦИАМ (Центральный институт авиационного моторостроения), созданный 3 декабря 1930г. на базе винтомоторного отдела ЦАГИ.
Работы над
проектированием и созданием турбореактивных
двигателей (
Рис. 2.6. Схема авиационного ТВД ГТУ-3
А
Люлька А.М.
В конце 1945 года на заводе «Салют» г. Москва было организовано новое конструкторское бюро ОКБ‑165 во главе с А.М. Люлькой.
В 1950-е годы под руководством А.М. Люльки
б
б.
а.
Рис. 2.7. Схемы ТРД РТД-1 и РД-1 конструкции
А.М. Люльки:
а – с центробежным
компрессором; б – с осевым компрессором
В 1985 г. был создан один из лучших военных ТРДД с форсажной камерой АЛ-31Ф имевший тягу 12500 кгс, установленный на лучший в мире истребитель Су-27 и созданные на его основе Су-30, Су-33, Су-34, Су-35.
Первые отечественные двухконтурные двигатели начали создаваться в 1950-х годах в Пермском ОКБ под руководствомП.А. Соловьева (ТРД-20) и в Куйбышевском (Самара) ОКБ под руководством Н.Д. Кузнецова (НК-6). Д-20 и НК-6, не выпускались серийно, но послужили базой для создания многих широко известных ТРДД и ТРДДФ различного назначения, выпускавшихся большими сериями: Д-20П, Д-30, Д-30КУ/КП, Д-30Ф6, НК-8, НК-86, НК-144-22, НК-32.
П
Соловьев П.А.
Кузнецов Н.Д.
Выдвинутая еще в предвоенные годы техническая идея А. М. Люльки во 2-й половине ХХ века была широко реализована во всем мировом авиадвигателестроении – двухконтурные двигатели стали доминирующими как в гражданской, так и в военной авиации.
Т
Микулин А.А.
Климов С.К.
Туманский С.К.
Ивченко А.Г.
