- •А.А. Григорьев введение в авиационную и ракетную технику
- •160700 «Проектирование авиационных и ракетных двигателей»
- •160700 «Двигатели летательных аппаратов»
- •Введение
- •1. Летательные аппараты
- •1.1. Основы теории полета и управления ла
- •1.1.1. Аэродинамические силы
- •1.1.2. Аэродинамические характеристики крыла
- •1.1.3. Равновесие самолета
- •1.1.4. Устойчивость самолета
- •1.1.5. Управление самолетом в полете
- •1.1.5.1. Обеспечение продольной управляемости самолета
- •1.1.5.2. Обеспечение путевой (по направлению) управляемости самолета
- •1.1.5.3. Обеспечение поперечной (по крену) управляемости самолета
- •1.1.5.4. Неустойчивый режим полета (штопор)
- •1.2. Основы конструкции самолета
- •1.2.1. Основные составные части самолета
- •1.2.1.1. Крыло
- •1.2.1.2. Фюзеляж
- •1.2.1.3. Оперение
- •1.2.1.4. Энергетическая система ла
- •1.2.2. Классификация самолетов
- •1.2.2.1. Гражданские самолеты
- •1.2.2.2. Военные самолеты
- •1.2.3. Самолеты нетрадиционных аэродинамических схем
- •1.2.3.1. Самолеты схемы «утка»
- •1.33. Утка в полете
- •1.2.3.2. Самолеты схемы «бесхвостка»
- •1.2.3.3. Самолеты с крылом обратной стреловидности
- •1.2.4. Ла различных типов
- •1.2.4.1. Экраноплан
- •1.2.4.2. Вертолет
- •1.2.4.4. Автожир
- •1.2.4.5. Ла вертикального и короткого взлета и посадки
- •1.2.4.6. Ла сверхзвуковых и гиперзвуковых скоростей полета
- •1.2.4.7. Ракеты
- •1.2.4.8. Космические летательные аппараты
- •Контрольные вопросы:
- •2.2. Классификация реактивных двигателей
- •2.3. Принцип работы турбореактивного двигателя (трд)
- •2.3.1. Преимущества трд перед поршневой су
- •2.3.2. Принцип создания тяги трд
- •2.3.3. Энергетические превращения и изменение параметров
- •2.3.4. Вывод формулы для определения тяги трд
- •2.4. Основные параметры трд
- •2.5. Области применения реактивных двигателей
- •2.6. История развития авиационных врд
- •2.7. Идеальный цикл трд
- •2.7.1. Сущность второго закона термодинамики
- •2.7.2. Условия и диаграммы идеального цикла
- •2.7.3. Работа идеального цикла
- •2.7.4. Термический кпд идеального цикла
- •2.8. Характеристика врд различных типов
- •2.8.1. Трд с дополнительным подогревом воздуха (трдф)
- •2.8.2. Двухвальный трд
- •2.8.3. Двухконтурный трд (трдд)
- •2.8.4. Турбовальные (тВаД) и турбовинтовые (твд) двигатели
- •Преимущества и недостатки одновальных твд и тВаД
- •Особенности конструкции тВаД со свободной турбиной
- •Основные параметры твд
- •Основные параметры тВаД:
- •2.8.5. Прямоточные врд (пврд)
- •2.8.6. Турбопрямоточные врд (тпд)
- •2.8.7. Двигатель изменяемого рабочего процесса (дирп)
- •2.9. Наземное применение авиационных газотурбинных двигателей (гтд)
- •2.10. Топлива, применяемые в врд
- •2.11. Ракетные двигатели (рд)
- •2.11.1. Классификация рд по источнику энергии
- •2.11.1.1. Создание тяги в химическом рд
- •2.11.1.2. Расходный комплекс рд
- •2.11.1.2. Тяговый комплекс рд
- •2.11.2. Ракетные топлива (рт)
- •2.11.2.1 Жидкие ракетные топлива (жрт)
- •2.11.2.2. Твердые ракетные топлива (трт)
- •2.11.3. Жидкостные рд (жрд)
- •2.11.3.1. Классификация жрд
- •2.11.3.2. Принципиальные схемы жрд
- •2.11.3.3. Особенности конструкции жрд
- •2.11.4. Ракетный двигатель твердого топлива (рдтт)
- •Оглавление
- •1. Летательные аппараты……………………………………………………………….23
- •2. Энергетические установки ла……………………………………………………….71
- •Библиографический список
1.2.3.3. Самолеты с крылом обратной стреловидности
Самолет с крылом
обратной (отрицательной) стреловидности
(КОС) (рис. 1.43, 1.44) имеет ряд аэродинамических
преимуществ перед самолетом с крылом
прямой (положительной) стреловидности.
Особенностью дозвукового обтекания
КОС является возникновение срыва потока
в корневой части крыла при сравнительно
небольших углах атаки и практически
безотрывное обтекание концевых частей
КОС, что обеспечивает сохранение
эффективности элеронов до больших углов
атаки и практически исключает попадание
самолета в штопор. Для ослабления
срывного обтекания в корневой части
КОС обычно устанавливают переднее
горизонтальное оперение (ГО) и треугольный
передний наплыв крыла. Одновременное
согласованное отклонение заднего и
переднего ГО вниз позволяет осуществлять
увеличение подъемной силы без изменения
продольного момента, так как момент от
переднего ГО относительно центра масс
компенсирует момент заднего ГО, а
суммарное приращение подъемной силы
ГО прикладывается в центре масс самолета.
Такой способ называется – непосредственное
управление подъемной силой (
Рис. 1.43. Самолет с КОС
Рис. 1.44. Истребитель с КОС Су-47
Увеличение аэродинамического качества самолета с КОС объясняется так же снижением волнового сопротивления вследствие уменьшения площади миделя планера. При взлете и посадке концы КОС удаляются от земли при увеличении угла атаки, что повышает безопасность полета.
Основным недостатком рассматриваемой схемы является то, что при больших скоростях полета КОС склонно к развитию катастрофически нарастающих крутильных деформаций (дивергенции) концов крыла. Это объясняется тем, что поток воздуха, обтекая крыло направленное ему навстречу, усиливает, а не гасит возникающие отклонения концов крыла. Применение в конструкции крыла композиционных материалов в сочетании со специальными конструктивно-силовыми схемами позволяет в значительной степени устранить этот недостаток КОС без существенного увеличения массы крыла.
1.2.4. Ла различных типов
1.2.4.1. Экраноплан
Э
Рис. 1.45. Экраноплан Орленок
К
Рис. 1.46. Проект экранолета
