- •Описание курса
- •Список всех тем
- •Дененің тік төмен және тік жоғары қозғалысы
- •Шеңбер бойымен қозғалыс
- •Динамика
- •Күш моменті
- •Жұмыс.Қуат. Энергия
- •Cақталу заңдары
- •Механикалық тербелістер мен толқындар
- •Еріксіз тербеліс
- •Молекулалық физика. Жылу құбылыстары Молекула кинетикалық теория негіздері
- •Булардың қасиеті. Қайнау. Ауадағы су буы. Буды өлшейтін құралдар.
- •Сұйық заттардыңқасиеттері. Үстіңгі қабат.
- •Сұйық заттар мен қатты заттардың өзара әсері.Қатты заттар. Деформация. Фазалық ауысу.
- •Термодинамика Темодинамиканың і заңы. Жылу және жұмыс.
- •Термодинамиканың іі заңы
- •Электростатика
- •Магнетизм
- •Электромагниттік тербелістер мен толқындар
- •1. Гармоникалық тербеліс деген не?
- •2. Электромагниттік тербеліс деген не?
- •3. Томсон формуласы деген не?
- •Айнымалы тоқ тізбектері.
- •Оптика Салыстырмалылық теориясының принциптері. Гюгенс принципі.
- •Дифракция мен дисперсия.
- •Электромагниттік толқындар шкаласы. Жылулық сәулелер.
Электромагниттік толқындар шкаласы. Жылулық сәулелер.
Қоршаған орта жөнiндегi бiлiмiмiздiң тереңдеуiнiң барысында алғашқы кезде бiр-бiрiнен тәуелсiз болып көрiнген көптеген құбылыстардың арасында терең байланыс бар екенi белгiлi болды. Соның бiр мысалы жарық, рентген сәулелерi және радиотолқындардың арасындағы байланыс. Бұл күнде бұл физикалық нысандардың бәрiнiң табиғатының бiр - олардың бәрiнiң электромагниттiк толқын екенi, олардың бiр-бiрiнен тек толқын ұзындығының мәнiмен ғана ажыратылатыны белгiлi. 4.10 – суретте электромагниттiк сәуле шығарудың шкаласы келтiрiлген. Ол өте кең ауқымды қамтиды. Радиотолқындардың ұзындығы 10-6 м-ден 5·103 м аралығында жатады. Мұндағы ұзындығы 103м-ден артық болатын толқындар ұзын толқындар (ДВ), ұзындығы 102 - 103 м аралығында жатқан толқындар орта толқындар (СВ), ұзындығы 10 - 102 м аралығындағы толқындар қысқа толқындар (КВ), ал ұзындықтары 10 м-ден кем болатын толқындар ультрақысқа толқындар (УКВ) деп аталады. Радиотолқындарды арнайы генераторлар арқылы шығарып алады. Электромагниттiк толқындардың келесi аймағы инфрақызыл, көрiнетiн және ультракүлгiн сәуле шығару аймағы болып табылады. Ол 5·10-4 - 8·10-9 м аралығында жатыр. Бұл аймақ бiр шетiнен радиотолқындар аймағымен, ал екiншi шетiнен рентген сәулелерi аймағымен бiршама қабаттасады. Жалпы электромагниттiк толқындар шкаласы мұндай аймақтарға шартты түрде бөлiнедi. Бұл аймақтағы сәуле шығару атомдар мен молекулалардағы электрондар бiр энергетикалық деңгейден екiншi деңгейге өткен кезде туындылайды. ХIХ ғасырдағы ғылымның даму барысында қысқа электромагниттiк толқындар аймағын зерттеу одан әрi жүргiзiлдi. Осындай зерттеулердiң нәтижесiнде 1895 жылы В.Рентген толқын ұзындығы ультракүлгiн сәулелердiң толқын ұзындығынан да кем сәулелердi байқады. Бұл сәулелер вакуум түтiгiнiң iшiндегi анодты катодтан ұшып шыққан аса шапшаң (энергиясы ондаған мың электронвольт) электрондармен атқылаған кезде туындылайды. Алғашқы кезде Х-сәулелер деп аталған бұл сәулелердiң толқын ұзындығы 5·10-8 - 8·10-12 м аралығында жатыр. Рентген сәулелерi көзге көрiнбейдi. Ол заттардың қалың қабаты арқылы аса көп жұтылмай-ақ өтiп кете бередi. Оның осы қасиетiн әртүрлi заттардың iшкi құрылысын зерттеуде (рентгеноструктурный анализ), әсiресе медицинада (рентгенография) табыспен қолданады. Электромагниттiк толқындардың iшiндегi толқын ұзындығы ең аз болатын сәулелер гамма-сәулелер. Олардың толқын ұзындығы шамамен 5·10-11 м-ден кем. Бұл сәулелер атом ядросында өтетiн құбылыстармен, радиоакитвтi ыдыраумен байланысқан. Гамма-сәулелердiң аса үлкен ағыны космостан келедi. Бiрақ олар негiзiнен Жер атмосферасында жұтылып қалады. Егер бұл сәулелер Жер бетiне жеткен болса, онда Жер бетiндегi тiршiлiктi жойып жiберер едi. |
|
Сыртқы фотоэффект. Столетов тәжірибесі.
Г.Герц 1887 жылы, әдетте жоғарғы кернеуде байқалатын ұшқынды разряд, егер терiс электродқа ультракүлгiн сәуле түсiрсе, төменгi кернеуде де бола бастайтынын байқады. Бiрақ ол оның себебiн түсiндiре алмады. Бұл құбылысты терең зерттеп түсiндiрген орыс ғалымы А.Г.Столетов болды. Ол өз тәжiрибелерiнде ультракүлгiн сәулелердiң әсерiнен катодтан терiс зарядтардың ұшып шығатынын анықтады. Бұл ұшып шыққан бөлшектердiң меншiктi зарядын өлшеу арқылы жүргiзiлген бұдан арғы зерттеулер олардың электрондар екенiн көрсеттi.
Осылай, қатты денелер немесе сұйықтардан жарықтың әсерiнен электрондардың ұшып шығару құбылысын сыртқы фотоэлектрлiк эффект (немесе жәй фотоэффект) деп, .ал бұл ұшып шыққан электрондарды фотоэлектрондар деп атады.
Тәжiрибенiң негiзiнде фотоэффекттiң мынадай қарапайым үш заңы анықталды:
1. Фотоэлектрондардың максимальдi жылдамдығы түсiп тұрған жарықтың қарқындылығынан емес, оның жиiлiгiнен тәуелдi болады
2. Әрбiр затқа түсiп тұрған жарықтың жиiлiгi фотоэффекттiң қызыл шекарасы деп аталатын қандай да бiр νmin жиiлiгiнен кем болса фотоэффект құбылысы байқалмайды
3. Фотоэффект кезiнде уақыт бiрлiгiнде ұшып шығатын электрондардың саны ( басқа сөзбен айтқанда тiзбектегi қанығу фототогының мәнi ) түсетiн жарық қарқындылығына тура пропорционал.
Тәжiрибенiң негiзiнде анықталған жоғарыдағы қарапайым заңдарды жарықтың толқындық теориясының көмегiмен түсiндiру мүмкiн болмады. Бұл классикалық физиканың тiрелген тағы бiр тығырығы едi.
Фотоэффект теориясы. Жарық кванттары
Фотоэффект заңдарының теориялық түсiнiгiн 1905 жылы А.Эйнштейн бердi. Ол өз зерттеулерiнде М.Планктың кванттар жөнiндегi ұғымын одан әрi дамыта отырып, жарық тек кванттар түрiнде шығарылып ғана қоймайды, сонымен қатар кванттар түрiнде жұтылады да деп есептедi. Бұл жарық кванттарын ол фотондар деп атады. Эйнштейннiң бұл идеялары осы кезге дейiн үстемдiк етiп келген жарықтың толқындық теориясынан өзгеше, соны көзқарас едi. Бұл жерде жарықтың таралуы үздiксiз толқындық үрдiс ретiнде емес, ерекше жарық бөлшектерi – фотондардың с - ға тең жылдамдықпен қозғалатын ағыны ретiнде қарастырылады. Бұл тұрғыдан қарағанда, мәселен монохроматты жарыққа энергияларының мәндерi бiрдей, әрi hν-ге тең болатын фотондар сәйкес қойылады. Ал жарықтың затқа жұтылуы сәйкес фотондар осы затқа түскен кезде өз энергиясын түгелiмен заттың атомдары мен молекулаларына беруiмен түсiндiрiледi. Жарықтың табиғатына деген осы кванттық көзқарас фотоэффект құбылысының тәжiрибеден байқалатын барлық заңдылықтарын түсiндiруге мүмкiндiк бердi.
Шындығында, мәселен, электрон металлдан ұшып шығуы үшiн металл-вакуум шекарасындағы потенциалдық тосқауылдан өтуi, яғни қандай да бiр Aшығ-ға тең шығу жұмысын iстеуi қажет. Бұған қажет энергияны электрон өзi жұтқан фотоннан алады. Фотон металл атомына жұтылған кезде өзiнiң εν=hν -ға тең энергиясын толығымен электронға бередi. Онда мұндай фотоэлектрондар үшiн энергияның сақталу заңын мына түрде жазуға болады
|
(1) |
Мұндағыmv2/2 – металлдар данұшыпшыққан фотоэлектронның кинетикалық энергиясы, ал Aшығ жоғарыдағы шығу жұмысы. Бұл өрнек сыртқы фотоэффект үшiн жазылған Эйнштейн теңдеуi депаталады. Бұл теңдеуденегер hν>Ашығ болса, онда электрон өз энергиясының бiр азыншығужұмысынажұмсап, металлданұшыпшығаалатыныкөрiнiптұр. Алегерэлектронныңэнергиясышығужұмысынаназболса, ондаолметаллдантысқарышығаалмайды. Фотоэффектмүмкiнболабастайтынеңазжиiлiктi νminдепбелгiлейотырып, оныфотоэффекттiң қызыл шекарасы деп атайды. Фотоэффекттiң қызыл шекарасының мәнi электрон ұшып шығатын беттiң күйiмен және металлдың химиялық құрамы мен анықталады.
Эйнштейнтеңдеуi сыртқы фотоэффекттiң тәжiрибеден байқалатын барлық заңдарын теориялық тұрғыдан түсiндiруге мүмкiндiк бередi. Шындығында, екiншi заң мен анықталған фотоэффекттiң қызыл шекарасының түсiнiгiн жоғары да бердiк, алендi (6.3) өрнегiнен электрондардың максимальдi кинетикалық энергиясы, яғни максимальдi жылдам дығының жиiлiктен тәуелдi екенi көрiнiптұр. Бұл фотоэффекттiң бiрiншi заңы.
Ақырында, уақыт бiрлiгiнде ұшып шығатын электрондардың саны бетке түсiп жатқан фотондардың санына пропорционал болуы керек. Ал фотондардың саны жарықтың қарқын дылығынан ықтайды. Сонымен, фотоэффекттiң үшiншi заңыда өз түсiнiгiн алды.
Фотоэффекттiң техникада қолданылуы
Фотоэффект құбылысы техникада және өндiрiсте әртүрлi үрдiстердi автоматтандыруда кеңiнен қолданылады. Осы құбылыстың негiзiнде жұмыс iстейтiн құралдарды фотоэлементтер депатайды. Фотоэлемменттердiң өздерiне жарық түскенiн, немесе түскен жарықтың интенсивтiлiгi азғана өзгерiсiнiң өз iнлездесе зеалуыоны фотореле депаталатынаса сезiмтал құрал ретiнде пайдалануға мүмкiндiк бередi.
|
(2) |
|
3 - сурет |
Жартылай өткiзгiштердегi тундылайтын iшкi фотоэффектқұбылысыондақосымшаэлектрондарменкемтiктердiңпайдаболуынаалыпкеледi. Бұл жартылай өткiзгiштiң ток өткiзуқа бiлетiнелеулi арттырады. Оныәдетте фотоөткiзгiштiк депатайды. Осы фото өткiзгiштiк құбылысына негiзделген құралдарды фотокедергiлердепатайды. Қарапайым фотокедергiнi әдетте изоляторпластиналарға жартылай өткiзгiштiңжұқа қабатын жағуарқылы жасайды. Мұндай пластиналарға жарықтүскен кезде фотоэффект салдарынантуындылаған электрондар мен кемтiктер дiңар қасындатiзбекте фотоөткiзгiштiк пайда болып, ол арқылытокөте бастайды. Өте тiнтоктыңшамасыкедергiдентәуелдi болғандықтанбұлқұралжарықағыныныңөзгерiсiнтiкелейэлектрсигналдарынаайналдыруғамүмкiндiкбередi. Мұндай фотокедергiлер дыбысты кинода, теледидарда, автоматтандыру мен телемеханикада кеңiнен қолданылады.
Фотокедергiлер адамдар тiкелей бақылай алмайтын жердегi өтiп жатқан өндiрiстiк үрдiстердiң қалыпты өтуiн жiтi бақылай алады. Бұл үрдiстердiң қалыпты өтуi бұзылатын болса сәйкес фотокедергiге түсетiн жарық ағыны өзгередi де бiз оны фототоктың қалыптан тыс өзгерiсi арқылы сезiп, үрдiске сәйкес түзетулер жасаймыз.
Фотокедергiлер сонымен қатар әртүрлi халық тұтынатын заттарды өлшемдерi мен түрлерiне қарата iрiктеуге мүмкiндiк бередi. Қарапайым фотокедергiлер метро стансаларына кiре берiсте жолаушылардың жолақыны дұрыс төлеуiн қадағалайды.
Бақылау сұрақтары
1.Жылулық сәулелер деген не?
2. Сыртқы фотоэффект деген не?
3. Фотон деген не?
4. Кван энергиясы қалай анықталады?
