- •1. Схема тепловых сетей, резервирование в схемах.
- •2. Схема крп.
- •3. Запорная арматура в теплосетях.
- •4. Подвижные опоры.
- •5.Неподвижные опоры
- •6. Компенсация температурных удлинений, компенсаторы
- •7. Общие вопросы трассировки сетей
- •8.Основные вопросы построения продольного профиля теплопроводов
- •9. Надземные прокладки тп
- •10. Прокладки тс в каналах
- •11. Бесканальные прокладки, основные виды бесканальных прокладок
- •13. Установка арматуры и фасонных частей на трубопроводах бесканальной прокладки с пи трубами.
- •14. Система аварийной сигнализации на трубопроводах бесканальной прокладки с пи трубами
- •15. Бесканальная прокладка с гибкими Пи трубами
- •16. Камеры обслуживания и контроля в теплосетях
- •17. Защита подземных прокладок от грунтовых вод
- •18. Пересечение труб-ов тс с инженерными сооружениями и естественными препятствиями
- •19. Определение расчетных расходов теплоносителя – сетевой воды перед гидравлич. Расчетом
- •20. Основные теоретические положения гидравлич. Расчета водяных тс
- •21. Последовательность гидравлического расчета трубопроводов водяных тепловых сетей
- •22.Гидравлический расчет паропроводов
- •23. Гидравлический расчет сборных конденсатопроводов
- •24. Основные элементы пьезометрических графиков
- •25. Основные требования к гидродинамическому режиму в тепловых сетях
- •26. Линия статического давления в теплосетях
- •27. Линии максимальных и минимальных гидродинамических пьезометрических напоров в трубопроводах теплосети
- •28. Выбор схем присоединения абонентов к теплосети, исходя из пьезометрического графика
- •29. О гидравлической характеристике сети
- •30. Гидравлическая устойчивость систем теплоснабжения
- •31. Подпитка тс, схема подпитки
- •32. Особенности гидравлического режима открытых систем тс
- •33. Насосные подстанции на подающем трубопроводе теплосети
- •34. Дросселирующая подстанция на обратном трубопроводе теплосети
- •35. Насосные подстанции на обратном трубопроводе теплосети
- •36. Определение параметров и подбор сетевых насосов
- •37. Определение параметров и подбор подпиточных насосов и конденсатных насосов
- •38. Определение требуемой толщины стенки трубы по допустимому напряжению от внутреннего давления
- •39. Определение расстояний между подвижными опорами
- •40. Определение горизонтальных нагрузок на неподвижную опору трубопровода
- •45. Теплоизоляционные конструкции в тепловых сетях.
- •46. Теплоизоляционные конструкции применяемые в Беларуси
- •47. Теплоизоляционные конструкции бесканальных прокладок
- •48. Уравнение определения потерь тепла трубопроводом,
- •49. Суммарное термическое сопротивление трубопровода канальной прокладки
- •50. Суммарное термическое сопротивление трубопровода бесканальной прокладки
- •51. Термическое сопротивление слоев теплоизоляции и на поверхности канала
- •52. О коэффициенте теплоотдачи на поверхности теплоизоляционной конструкции трубопровода
- •53. О термическом сопротивлении грунта
- •54. Определение толщины основного слоя теплоизоляционной конструкции
- •55. Метод определения температуры воздуха в канале теплосети
- •56. Особенности определения теплового потока от трубопроводов бесканальной прокладки
- •57. Oпределения температурного поля грунта вокруг теплопровода
- •58. Oпределение падения t теплоносителя по длине трубопроводов
- •59. Mетодика определения экономической толщины слоя изоляции
6. Компенсация температурных удлинений, компенсаторы
Компенсационные устройства в тепловых сетях служат для устранения (или значительного уменьшения) усилий, возникающих при тепловых удлинениях труб. В результате снижаются напряжения в стенках труб и силы, действующие на оборудование и опорные конструкции.
Для компенсации удлинения труб применяют специальные устройства — компенсаторы, а также используют гибкость труб на поворотах трассы тепловых сетей (естественную компенсацию).
По принципу работы компенсаторы подразделяют на осевые и радиальные. Осевые компенсаторы устанавливают на прямолинейных участках теплопровода. Радиальные компенсаторы устанавливают на теплосети любой конфигурации.В тепловых сетях находят применение осевые компенсаторы двух типов: сальниковые и линзовые.
Сальниковые компенсаторы В качестве сальниковой набивки применяют
а
сбестовый
прографиченный шнур или термостойкую
резину. В процессе работы набивка
изнашивается и теряет упругость, поэтому
требуются периодическая ее подтяжка
(зажатие) и замена. Для обслуживания их
устанавливают в камерах, чтобы было
легко их заменить.
Основными достоинствами сальниковых компенсаторов являются малые габариты (компактность) и низкие гидравлические сопротивления, вследствие чего они нашли широкое применение в тепловых сетях, особенно при подземной прокладке.
В
линзовых
компенсаторах
при температурных удлинениях труб
происходит сжатие специальных упругих
линз (волн). При этом обеспечивается
полная герметичность в системе и не
требуется обслуживания компенсаторов.
Линзовые
компенсаторы имеют относительно
небольшую компенсирующую способность
и большую осевую реакцию. В связи с этим
для компенсации температурных деформаций
трубопроводов тепловых сетей устанавливают
большое число волн или производят
предварительную их растяжку.
На рис.линзовый компенсатор
г-образные α-образные п-образные
В
о
всех случаях прокладки используют
повороты в качестве компенсаторов.
П-образный перед установкой растягивают,
чтобы увеличить компенсирующую
способность
Сильфонные компенсаторы (шарнирного типа) позволяют воспринимать усилия под некоторым углом, находят широкое применение.
7. Общие вопросы трассировки сетей
При проектировании теплоснабжения новых районов на первом этапе требуется выбрать направление (трассу) тепловых сетей от источника тепла до потребителей. Производится это по тепловой карте района с учетом материалов геодезической съемки местности, плана существующих и намечаемых надземных и подземных сооружений и коммуникаций, данных о характеристике грунтов и высоте стояния грунтовых вод и др.
При выборе трассы тепловых сетей исходят из следующих основных условий: надежности теплоснабжения, быстрой ликвидации возможных неполадок и аварий, безопасности работы обслуживающего персонала, наименьшей длины тепловой сети и минимального объема работ по ее сооружению. При этом учитывают также возможность совместной прокладки теплопроводов с другими инженерными сетями (водопроводом, газопроводом, канализацией, электрическими кабелями и др.). если это допускается по условиям надежности всех сетей и безопасности их обслуживания. Совместная прокладка может выполняться как подземным способом (в непроходных и проходных каналах, городских и внутриквартальных коллекторах), так и надземным (многоярусные опоры, мачты, эстакады). Такие решения обычно приводят к снижению суммарных затрат на строительство и эксплуатацию инженерных сетей. Совместная прокладка может выполняться как подземным способом (в непроходных и проходных каналах, городских и внутриквартальных коллекторах), так и надземным (многоярусные опоры, мачты, эстакады).Такие решения обычно приводят к снижению суммарных затрат на строительство и эксплуатацию инженерных сетей.
В жилых районах городов трассу теплопроводов прокладывают, как правило, в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы зеленых насаждений.
На территории, не подлежащей застройке, применяется, как правило, надземная прокладка теплопроводов на низких опорах. При этом трасса тепловых сетей должна намечаться вдоль автомобильных дорог или с учетом устройства дорог для строительства и обслуживания тепловых сетей.
Выбранная трасса тепловых сетей наносится на план геодезической съемки местности с привязкой основных направлений к зданиям и другим сооружениям. По трассе для намечаемого типа прокладки теплопровода на основе тепловых нагрузок потребителей определяются ориентировочно диаметры расчетных участков и затем типы и расположение компенсаторов и неподвижных опор, а также камер при подземной прокладке.
По трассе тепловых сетей строится продольный профиль на основе натурной съемки и проекта вертикальной планировки.
