- •1. Схема тепловых сетей, резервирование в схемах.
- •2. Схема крп.
- •3. Запорная арматура в теплосетях.
- •4. Подвижные опоры.
- •5.Неподвижные опоры
- •6. Компенсация температурных удлинений, компенсаторы
- •7. Общие вопросы трассировки сетей
- •8.Основные вопросы построения продольного профиля теплопроводов
- •9. Надземные прокладки тп
- •10. Прокладки тс в каналах
- •11. Бесканальные прокладки, основные виды бесканальных прокладок
- •13. Установка арматуры и фасонных частей на трубопроводах бесканальной прокладки с пи трубами.
- •14. Система аварийной сигнализации на трубопроводах бесканальной прокладки с пи трубами
- •15. Бесканальная прокладка с гибкими Пи трубами
- •16. Камеры обслуживания и контроля в теплосетях
- •17. Защита подземных прокладок от грунтовых вод
- •18. Пересечение труб-ов тс с инженерными сооружениями и естественными препятствиями
- •19. Определение расчетных расходов теплоносителя – сетевой воды перед гидравлич. Расчетом
- •20. Основные теоретические положения гидравлич. Расчета водяных тс
- •21. Последовательность гидравлического расчета трубопроводов водяных тепловых сетей
- •22.Гидравлический расчет паропроводов
- •23. Гидравлический расчет сборных конденсатопроводов
- •24. Основные элементы пьезометрических графиков
- •25. Основные требования к гидродинамическому режиму в тепловых сетях
- •26. Линия статического давления в теплосетях
- •27. Линии максимальных и минимальных гидродинамических пьезометрических напоров в трубопроводах теплосети
- •28. Выбор схем присоединения абонентов к теплосети, исходя из пьезометрического графика
- •29. О гидравлической характеристике сети
- •30. Гидравлическая устойчивость систем теплоснабжения
- •31. Подпитка тс, схема подпитки
- •32. Особенности гидравлического режима открытых систем тс
- •33. Насосные подстанции на подающем трубопроводе теплосети
- •34. Дросселирующая подстанция на обратном трубопроводе теплосети
- •35. Насосные подстанции на обратном трубопроводе теплосети
- •36. Определение параметров и подбор сетевых насосов
- •37. Определение параметров и подбор подпиточных насосов и конденсатных насосов
- •38. Определение требуемой толщины стенки трубы по допустимому напряжению от внутреннего давления
- •39. Определение расстояний между подвижными опорами
- •40. Определение горизонтальных нагрузок на неподвижную опору трубопровода
- •45. Теплоизоляционные конструкции в тепловых сетях.
- •46. Теплоизоляционные конструкции применяемые в Беларуси
- •47. Теплоизоляционные конструкции бесканальных прокладок
- •48. Уравнение определения потерь тепла трубопроводом,
- •49. Суммарное термическое сопротивление трубопровода канальной прокладки
- •50. Суммарное термическое сопротивление трубопровода бесканальной прокладки
- •51. Термическое сопротивление слоев теплоизоляции и на поверхности канала
- •52. О коэффициенте теплоотдачи на поверхности теплоизоляционной конструкции трубопровода
- •53. О термическом сопротивлении грунта
- •54. Определение толщины основного слоя теплоизоляционной конструкции
- •55. Метод определения температуры воздуха в канале теплосети
- •56. Особенности определения теплового потока от трубопроводов бесканальной прокладки
- •57. Oпределения температурного поля грунта вокруг теплопровода
- •58. Oпределение падения t теплоносителя по длине трубопроводов
- •59. Mетодика определения экономической толщины слоя изоляции
4. Подвижные опоры.
ПО воспринимают вес теплопровода, и обеспечивает ему свободное перемещение на строительных конструкциях. Устанавливают через определенное расстояние друг от друга с учетом допустимого прогиба трубопровода. ПО используют при всех способах прокладки, кроме бесканальной. По принципу перемещения различают опоры скольжения, качения и подвесные.
Наиболее часто используются скользящие опоры. Применяют при канальной прокладке для любых каналов и при подземной прокладке на опорах (высоких и низких). Скользящие опоры свободно опираются на несущие строительные конструкции. Для уменьшения сил трения и истирания несущих конструкций в бетон заливают стальную опорную плиту с приваренными к ней лапками для скрепления с бетоном.
1 – трубопровод
2 – ПО из полосовой стали (м.б. изогнута)
Опора укладывается на бетонную плиту 4 с закладной деталью (кусочек швеллера или уголок) - 3
5 – ребро жесткости
В скользящих опорах происходит скольжение корпуса опоры по металлической подкладке, заделанной в опорную бетонную или железобетонную подушку.
При прокладке на высоких опорах (мачтах), вследствие сил трения м.б. продольный изгиб трубопровода. С увеличением диаметров трубопроводов более 185 мм трение на опорах существенно возрастает. Для уменьшения сил трения применяют опоры качения, разделяющиеся на катковые, роликовые и шариковые. В катковых (и шариковых) опорах башмак (корпус опоры) вращает и перемещает каток (или шарики) по опорному листу, на котором предусматриваются направляющие планки и выточки для предотвращения перекосов, заеданий и выхода катка. При вращении катка (шариков) скольжение поверхностей отсутствует, вследствие чего уменьшается значение горизонтальной реакции.
Катковая опора:
Позволяет передвигаться только по длине оси.
1- трубопровод
2 - ПО из полосовой стали
3 - каток
4 - рельсы (направляющая)
5 - ребро жесткости
6 – плита
Аналогично катковым есть роликовые опоры:
Т
акже
позволяют передвигаться только по длине
оси.
Катковые и роликовые опоры работают на прямолинейных участках сети. На поворотах трассы трубопроводы перемещаются не только в продольном, но и в поперечном направлении. Поэтому установка катковых, а иногда и роликовых опор на криволинейных участках трубопроводов не рекомендуется.
Аналогичное устройство шариковых опор, где в качестве опорных элементов применяют шарики, что позволяют перемещаться трубопроводу также под углом к оси. Шариковые опоры могут также применяться в местах поворота трассы.
При надземной прокладке трубопроводов по ограждающим конструкциям промышленных зданий (стенам, фермам и т.д.) часто используют ввиде ПО подвески или же подвесные опоры.
1
– трубопровод
2 – тяга
3 - подвесной болт
4 – кронштейны
5.Неподвижные опоры
Неподвижные опоры предназначены для закрепления трубопровода в отдельных точках, разделения его на независимые по температурным деформациям участки и для восприятия усилий, возникающих на этих участках, что устраняет возможность последовательного нарастания усилий и передачу их на оборудование и арматуру. Изготовляют эти опоры, как правило, из стали или железобетона.
Бывают следующие виды неподвижных опор:
Щ
итовые
неподвижные опоры (вне камеры):
1-трубопровод
2-канал
3-тело опоры
4-бетонное основание
5-фланец
6-ребра жесткости
В камерах выполняются опоры из сортового металла или из использованных ж/д рельсов
Хомутовые опоры (при укладке трубопроводов по огр. констр.)
