- •1. Общие сведения о станках. Основные определения.
- •2. Технико-экономические показатели станков.
- •3. Производительность станков и методы ее оценки.
- •4. Надежность станков и основные пути ее повышения.
- •6. Точность станков и пути ее повышения.
- •7. Жесткость станков и пути ее повышения.
- •8. Виброустойчивость станка и пути ее повышения.
- •9. Теплостойкость станка и пути ее повышения.
- •11. Этапы проектирования станков. Проектные критерии.
- •12. Основные предпосылки автоматизации проектирования.
- •13. Оптимизация проектных решений.
- •14. Системы автоматизированного проектирования.
- •1 5. Компоновка станков. Типовые группы.
- •16. Привод главного движения. Требования к нему.
- •17. Исходные данные для проектирования привода главного движения.
- •18. Выбор мощности электродвигателя привода главного движения.
- •19. Способы регулирования скоростей в станках.
- •20. Графо-аналитический метод расчета коробок скоростей.
- •21. Основные типы коробок скоростей и область их применения.
- •22. Основные правила построения структурных сеток привода главного движения.
- •24. Автоматизация проектирования главного привода.
- •25. Основные требования к шпиндельным узлам.
- •26. Шпиндельные узлы. Материалы для изготовления шпинделя и его термообработка.
- •27. Опоры для шпинделей. Основные требования к ним.
- •28. Подшипники качения для шпиндельных узлов.
- •29. Подшипники скольжения для шпиндельных узлов.
- •30. Гидростатические и аэродинамические опоры шпиндельных узлов.
- •31. Электромеханический привод подач. Выбор электродвигателя.
- •32. Основные типы тяговых устройств станков.
- •33. Устройства микроперемещений в станках.
- •34. Базовые детали и направляющие. Назначение и основные требования к ним.
- •35. Базовые детали и направляющие. Основные материалы для их изготовления.
- •36. Расчет базовых деталей. Способы уменьшения температурных деформаций.
- •37. Классификация направляющих скольжения.
- •38. Гидростатические и аэростатические направляющие. Их преимущества и недостатки.
- •39. Направляющие качения. Изоляция направляющих.
- •40. Манипуляторы для смены заготовок
- •41. Устройства смены инструмента включают в себя:
- •42. Упругая система включает в себя: с-п-и-д.Работа станка сопроваждается деформацией упругой системы и процессам развившееся в подвижной системе. К этим процессам относят:
- •44. Виброизоляция станков.
- •46. Испытания станков
- •47. Эксплуатация станков.
- •48. Организация ремонта станков.
- •49. Износ станков и способы его контроля.
- •50. Восстановление изношенных деталей станков.
- •51. Основные принципы числового программного управления.(Пронников, "мрс и автоматы", стр.391)
- •52. Классификация систем чпу. (стр.396)
- •53. Типовая система чпу и характеристика ее устройств. (стр.401)
- •54. Структура автоматических линий. (стр.433)
51. Основные принципы числового программного управления.(Пронников, "мрс и автоматы", стр.391)
Числовое программное управление (ЧПУ) — компьютеризованная система управления, управляющая приводами металло- (помимо металлорежущих например, фрезерных или токарных), дерево- и пластмасообрабатывающих станков (центров), также существует оборудование для резки листовых заготовок, для обработки давлением и т.д. и/или станочной оснасткой, считывающую инструкции специализированного языка программирования (например, G-код) программы, который затем интерпретатором системы ЧПУ переводится из входного языка в команды управления главным приводом, приводами подач, контроллерами управления узлов станка (например, включить/выключить подачу охлаждающей эмульсии). Программа для станка (оборудования) с ЧПУ может быть загружена в собственную память (либо временно, до выключения питания — в оперативную память, либо постоянно — в ПЗУ, карту памяти или другой накопитель:жёсткий диск или твердотельный накопитель) с внешних носителей (например, магнитной ленты, перфорированной бумажной ленты (перфоленты), дискеты или флеш-накопителей). Помимо этого, современное оборудование подключается к централизованым системам управления посредством заводских (цеховых) сетей связи.
Для определения необходимой траектории движения рабочего органа в целом (инструмента/заготовки) в соответствии с управляющей программой (УП) используется интерполятор, рассчитывающий положение промежуточных точек траектории по заданным в программе конечным.
В системе управления, кроме самой программы, присутствуют данные других форматов и назначения. Как минимум, это машинные данные и данные пользователя, специфически привязанные к конкретной системе управления либо к определенной серии (линейке) однотипных моделей систем управления.
52. Классификация систем чпу. (стр.396)
1. В зависимости от способа управления исполнительным органом различают: позиционные, контурные и универсальные системы.
При позиционном управлении инструмент последовательно обходит ряд точек — позиций. Требуется высокая точность позиционирования, а траектория перемещения инструмента из одной позиции в другую не имеет существенного значения — это холостое перемещение.
В качестве примера на рис. 48, а показан корпус, в котором с высокой точностью должны быть обработаны отверстия. Обработка происходит не при перемещении инструмента, а при его остановке в позиции.
При контурном управлении инструмент движется без остановок и обработка совершается во время движения. Все погрешности отработки траектории переносятся на деталь.
Требуется высокая точность перемещения инструмента. В качестве примера на рис. 48,б показана обработка плоской фасонной плиты концевой фрезой. Универсальные системы управления совмещают в себе позиционное и контурное управление.
2. В зависимости от наличия обратной связи системы управления могут быть замкнутыми, или закрытыми, и разомкнутыми, или открытыми.
3. В зависимости от способа отсчета перемещения различают системы управления с абсолютным и относительным отсчетом. В первом случае отсчет ведется относительно начала системы координат: x1, y1, x2, y2 и т. д., во втором случае задаются приращения: Δx1, Δy1, Δx2, Δy2 и т. д. (рис. 48, а).
4. В зависимости от чисел управляемых координат различают одно-, двух-, трех-, четырех-, пятикоординатные системы управления. Из них какое-то число координат управляется одновременно (параллельно), а какое-то — последовательно.
5. В зависимости от элементной базы и уровня использования; ЭВМ различают системы первого, второго, третьего поколения.
Таблица 1
Признак классификации |
Системы |
Метод задания программы |
Числовые Цикловые |
Структура системы управления станком |
Замкнутые Разомкнутые |
Особенности формообразования при обработке |
Контурные Позиционные |
Вид представления управляющей информации |
Дискретные Непрерывные |
Число управляемых рабочих органов (координат) станка |
Двухкоординатные 2,5-координатные Трехкоординатные Многокоординатные |
