- •Транспонированная матрица
- •Обратная матрица
- •2,3 Порядка
- •Линейные уравнения
- •Векторы
- •Сонаправленные и противоположно направленные
- •Уравнение окружности
- •Эллипс. Фокус Эллипса
- •Парабола
- •Способы задания функции. Предел функции
- •Пределы. Замечательные пределы 1,2
- •Второй замечательный предел
- •Точки разрыва. Св-ва
- •Односторонние пределы
- •Методы интегрирования
Уравнение окружности
Мы имеем формулу для расчёта расстояния между двумя точками, если знаем координаты точек ∣AB∣=√(xA−xB)2+(yA−yB)2, а если так, то квадрат расстояния AB2=( xA−xB)2+(yA−yB)2.
Эллипс. Фокус Эллипса
Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух заданных точек F1 и F2 , называемых фокусами эллипса, есть величина постоянная.
Гипербола - геометрическое место точек, для каждой из которых модуль разности расстояний от нее до двух данных точек F1,F2 (фокусы) есть величина постоянная, равная 2a.
Элементы гиперболы: A1A2=2a - действительная ось B1B2=2b - мнимая ось A1 ,A2 - вершины F1(c ; 0), F2(-c ; 0) - фокусы F1F2=2c - фокальное расстояние (фокусное расстояние)
c2=a2+b2
Уравнение :
Парабола
Формула параболы y=ax2+bx+c если а>0 то ветви параболы направленны вверх, а<0 то ветви параболы направлены вниз. Свободный член c эта точке пересекается параболы с осью OY;
Вершина параболы, ее находят по формуле x=(-b)/2a, найденный x подставляем в уравнение параболы и находим y;
Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax2+bx+c=0;
Виды уравнений:
a) Полное квадратное уравнение имеет вид ax2+bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax2+bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax2+bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c) Неполное квадратное уравнение вида ax2+c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);
Способы задания функции. Предел функции
Табличный способ. Заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Применяется когда область определения функции является дискретным конечным множеством.
При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента.
Табличный способ наиболее удобен, когда множество Х конечно. При этом способе составляется таблица, в которой каждому элементу из множества Х, ставится в соответствие число Y.
Пример:
Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.
Чтобы графическое задание функции было корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением.
Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.
Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.
Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.
Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.
