Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
tmp_590-PSIKhODIAGNOSTIKA_BILETY663782301.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
207.86 Кб
Скачать

16. Понятие «генеральной совокупности», факторы её ограничения.

Генеральная совокупность - вся изучаемая выборочным методом статистическая совокупность объектов и/или явлений общественной жизни, имеющих общие качественные признаки или количественные переменные.

Генеральная совокупность состоит из всех единиц, которые могут быть к ней отнесены. Обычно ее рассматривают как приближающуюся к бесконечности совокупность.

В практике изучения здоровья населения генеральная совокупность рассматривается в пределах конкретных границ, очерченных территориальным или производственным признаком и поэтому включает в себя определенное число наблюдений (конкретное предприятие с числом работающих 10000 человек). Генеральной совокупностью может быть население города, села, дети школы и др.

В связи с трудоемкостью углубленного анализа всех единиц наблюдения, составляющих генеральную совокупность, исследование ограничивают некоторой частью единиц – выборочной совокупностью (выборкой).

Выборочная совокупность-часть генеральной совокупности, отобранная специальным выборочным методом.

Испытуемые отбираются в случайном порядке и пропорциональ­но численности каждой значимой части совокупности. Случай­ный отбор может осуществляться по алфавиту, по таблице слу­чайных чисел или другим способом. Важно, чтобы у всех пред­ставителей популяции были равные шансы попасть в выборку стандартизации. Это условие подразумевает, что каждый выбор не зависит от остальных. Объем выборки может варьироваться в широких пределах, но ее минимальный порог, необходимый для получения достоверных ре­зультатов, — порядка 200 человек.

Теоретическое обоснование выборочного метода дается теорией вероятности и законом больших чисел. ( Интуитивно понятно, что, чем меньше объем выборок, тем менее точным будут выборочные оценки генеральных параметров и, напротив, чем больше выборка, тем ближе выборочные средние и дисперсии лежат к генеральным значениям. Это явление называется законом больших чисел – с ростом числа наблюдений значения выборочных параметров стремятся воспроизвести генеральные).

Требования к выборочной совокупности:

1.она должна обладать основными характерными чертами генеральной совокупности;

2.должна быть достаточной по объему.

Поэтому выборочную совокупность из генеральной отбирают по определенным правилам, обеспечивающим случайность отбора

Выборка должна быть репрезентативной (представительной), то есть ее объекты должны достаточно хорошо отражать свойства генеральной совокупности.

Все значения генеральной совокупности должны иметь равную вероятность попадания в выборку (должен соблюдаться случайный выбор).

Выборка должна быть однородна (отсутствие систематической ошибки, отсутствие выпадающих данных).

Выборка может быть повторной, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность, и бесповторной, при которой отобранный объект не возвращается в генеральную совокупность.

17. Репрезентативность выборки стандартизации.

Стандартизация (по Анастази) – это единообразие процедуры проведения и оценки выполнения теста.

Выборка стандартизации - группа людей, на которой осуществляется стандартизация методики. Правила формирования выборки стандартизации:

1) выборка стандартизации должна состоять из респондентов, на которых в принципе ориентирован данный тест, то есть если создаваемый тест ориентирован на детей (например, тест Амтхауэра), то и стандартизация должна происходить на детях заданного возраста;

2) выборка стандартизации должна быть репрезентативной, то есть представлять собой уменьшенную модель популяции по таким параметрам, как возраст, пол, профессия, географическое распределение и т.д. Под популяцией понимается, например, группа дошкольников 6-7 лет, руководителей, подростков и т.д. Всякая большая совокупность людей, которую хотели бы исследовать или относительно которых собираются делать выводы, называется генеральной совокупностью ( популяцией).

Чтобы оценки носили достоверный характер, выборка должна быть репрезентативна, представительна рассматриваемой популяции, т. е. ее вероятностные свойства должны совпадать или быть близкими к свойствам генеральной совокупности. По мнению А. Анастази, подавляющее большинство диагностиче­ских методик стандартизовано не для столь широких популяций, как многие полагают. Трудно рассчитывать, что по какому-либо тесту имеются адекватные нормы для таких обширных популяций, как, напри­мер, «взрослые американцы-мужчины» или «американские дети 14-лет­него возраста». Выборки, ориентированные на широкие популяции, не всегда репрезентативны и чаще всего бывают смещены в тех или иных отношениях (т. е. некоторые подгруппы популяции могут быть пред­ставлены непропорционально своей численности). Так, если опре­делить популяцию как «14-летние дети», а выборку стандартиза­ции составить из 14-летних школьников, то ее нельзя рассматривать в качестве репрезентативной, поскольку не все 14-летние дети являют­ся школьниками. В этом случае лучше сузить определение популяции (т. е. определить ее как «14-летние школьники»), чем переносить нор­мы, полученные на школьниках, на популяцию 14-летних детей. Таким образом, одним из способов обеспечения репрезентативно­сти выборки является ограничение популяции. Ограничить популяцию можно по разным признакам: по возрасту, полу, социальному проис­хождению, профессии, социально-экономическому статусу, здоровью и т. д. Такая популяция определяется как специфическая, и стандартизация диагностических методик осуществляется на узконаправленных выборках, которые репрезентативны специфической популяции. Создатель диагностической методики должен всегда сообщать, для ка­кой специфической популяции были разработаны нормативные показатели.