- •Курсовая работа
- •Глава 1 Кластерный анализ 4
- •Глава 2 Программа кластерного анализа 12
- •Введение
- •Глава 1 Кластерный анализ
- •1.1 Основные понятия
- •1.2 Задачи и условия:
- •1.3 Типология задач кластеризации:
- •1.4 Примеры применения:
- •Глава 2 Программа кластерного анализа
- •2.1 Выбор методологии разработки программного обеспечения.
- •2.2 Описание выбранного языка программирования.
- •2.3 Программа для кластерного анализа.
- •Заключение
- •Список использованных источников литературы
1.2 Задачи и условия:
Кластерный анализ выполняет следующие основные задачи:
Разработка типологии или классификации.
Исследование полезных концептуальных схем группирования объектов.
Порождение гипотез на основе исследования данных.
Проверка гипотез или исследования для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.
Независимо от предмета изучения применение кластерного анализа предполагает следующие этапы:
Отбор выборки для кластеризации. Подразумевается, что имеет смысл кластеризовать только количественные данные.
Определение множества переменных, по которым будут оцениваться объекты в выборке, то есть признакового пространства.
Вычисление значений той или иной меры сходства (или различия) между объектами.
Применение метода кластерного анализа для создания групп сходных объектов.
Проверка достоверности результатов кластерного решения.
Можно встретить описание двух фундаментальных требований предъявляемых к данным — однородность и полнота. Однородность требует, чтобы все кластеризуемые сущности были одной природы, описывались сходным набором характеристик. Если кластерному анализу предшествует факторный анализ, то выборка не нуждается в «ремонте» — изложенные требования выполняются автоматически самой процедурой факторного моделирования (есть еще одно достоинство — z-стандартизация без негативных последствий для выборки; если ее проводить непосредственно для кластерного анализа, она может повлечь за собой уменьшение четкости разделения групп). В противном случае выборку нужно корректировать.
1.3 Типология задач кластеризации:
Типы входных данных
Признаковое описание объектов. Каждый объект описывается набором своих характеристик, называемых признаками. Признаки могут быть числовыми или не числовыми.
Матрица расстояний между объектами. Каждый объект описывается расстояниями до всех остальных объектов метрического пространства.
Матрица сходства между объектами. Учитывается степень сходства объекта с другими объектами выборки в метрическом пространстве. Сходство здесь дополняет расстояние (различие) между объектами до 1.
В современной науке применяется несколько алгоритмов обработки входных данных. Анализ путем сравнения объектов, исходя из признаков, (наиболее распространённый в биологических науках) называется Q-типом анализа, а в случае сравнения признаков, на основе объектов — R-типом анализа. Существуют попытки использования гибридных типов анализа (например, RQ-анализ), но данная методология ещё должным образом не разработана.
Цели кластеризации
Понимание данных путем выявления кластерной структуры. Разбиение выборки на группы схожих объектов позволяет упростить дальнейшую обработку данных и принятия решений, применяя к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй»).
Сжатие данных. Если исходная выборка избыточно большая, то можно сократить ее, оставив по одному наиболее типичному представителю от каждого кластера.
Обнаружение новизны. Выделяются нетипичные объекты, которые не удаётся присоединить ни к одному из кластеров.
В первом случае число кластеров стараются сделать поменьше. Во втором случае важнее обеспечить высокую степень сходства объектов внутри каждого кластера, а кластеров может быть сколько угодно. В третьем случае наибольший интерес представляют отдельные объекты, не вписывающиеся ни в один из кластеров.
Во всех этих случаях может применяться иерархическая кластеризация, когда крупные кластеры дробятся на более мелкие, те в свою очередь дробятся еще мельче, и т. д. Такие задачи называются задачами таксономии. Результатом таксономии является древообразная иерархическая структура. При этом каждый объект характеризуется перечислением всех кластеров, которым он принадлежит, обычно от крупного к мелкому.
Решение задачи кластеризации принципиально неоднозначно, и тому есть несколько причин (как считает ряд авторов):
не существует однозначно наилучшего критерия качества кластеризации. Известен целый ряд эвристических критериев, а также ряд алгоритмов, не имеющих четко выраженного критерия, но осуществляющих достаточно разумную кластеризацию «по построению». Все они могут давать разные результаты. Следовательно, для определения качества кластеризации требуется эксперт предметной области, который бы мог оценить осмысленность выделения кластеров.
число кластеров, как правило, неизвестно заранее и устанавливается в соответствии с некоторым субъективным критерием. Это справедливо только для методов дискриминации, так как в методах кластеризации выделение кластеров идёт за счёт формализованного подхода на основе мер близости.
результат кластеризации существенно зависит от метрики, выбор которой, как правило, также субъективен и определяется экспертом. Но стоит отметить, что есть ряд рекомендаций к выбору мер близости для различных задач.
