- •4. Совместное действие факторов эволюции
- •6. Филогенез. Правила эволюции филогенетических групп
- •7. Ген. Обратная транскрипция.
- •8. Изменчивость
- •11. Харди-Вайнберг
- •12. История эволюции
- •14. Хромосомный уровень организации генетического материала
- •15. Ыидообразование
- •16. Регуляции
- •18. Белки и ферменты
- •19. Фотосинтез
- •22. Обмены веществ
- •24. Анаэробное дыхание
- •25. Аэробное дыхание
- •1. Циклы
- •14. Ноосфера
- •8. Материя
- •9. Концепции климакса
- •10. Популяция
- •12. Структура арела
- •14. Совместное действие экологических факторов
- •По характеру воздействия[править | править вики-текст]
- •По происхождению[править | править вики-текст]
- •По расходованию[править | править вики-текст]
- •По направленности[править | править вики-текст]
- •19. Формообразующая роль факторов среды
- •20. Распределение в популяции
- •24. Принципы сукцессии Гипотеза подвижного равновесия Еленкина
- •Концепция климакса
- •Биоценотическая концепция паразитизма Беклемишева
- •Гипотеза моноклимакса Клементса
- •Гипотеза поликлимакса Нихолса – Тенсли
- •Гипотеза климакс–мозаики Уиттекера
- •Принцип сукцессионного замещения
- •Постулат “нулевого” максимума Маргалефа
- •Закон суксессионного замедления
- •Принцип “сукцессионного очищения” Маргалефа
- •Коннела – Слейтера
- •Правило незавершенности сукцессии в нарушенной среде
- •1. Покрытосеменные
- •2. Размножение
- •3. Высшие растения
- •4. Водоросли
- •5. Грибы
- •III. Половое размножение.
- •7. Вирусы
- •9. Рост и размножение бактерий
- •12. Микрофлора воды
- •14. Клеточный цикл и Митоз
- •15. Эмбриогенез
- •23. Болезни
7. Вирусы
Ви́рус (лат. virus — яд[2]) — неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток[комм. 2]. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей[3] (вирусы бактерий обычно называют бактериофагами). Обнаружены также вирусы, способные реплицироваться только в присутствии других вирусов (вирусы-сателлиты).
Со времени публикации в 1892 году статьи Дмитрия Ивановского, описывающей небактериальный патоген растений табака, и открытия в 1898 году Мартином Бейеринком вируса табачной мозаики[4] были детально описаны более 6 тысяч видов вирусов[5], хотя предполагают, что их существует более ста миллионов[6]. Вирусы обнаружены почти в каждой экосистеме на Земле, они являются самой многочисленной биологической формой[7][8]. Изучением вирусов занимается наука вирусология, раздел микробиологии.
Пока вирус находится во внеклеточной среде или в процессе заражения клетки, он существует в виде независимой частицы. Вирусные частицы (вирионы) состоят из двух или трёх компонентов: генетического материала в виде ДНК или РНК (некоторые, например мимивирусы, имеют оба типа молекул); белковой оболочки (капсида), защищающей эти молекулы, и, в некоторых случаях, — дополнительных липидных оболочек. Наличие капсида отличает вирусы от вирусоподобных инфекционных нуклеиновых кислот — вироидов. В зависимости от того, каким типом нуклеиновой кислоты представлен генетический материал, выделяют ДНК-содержащие вирусы и РНК-содержащие вирусы; на этом принципе основана классификация вирусов по Балтимору. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые инфекционные белки и не содержат нуклеиновых кислот. Форма вирусов варьирует от простой спиральной и икосаэдрической до более сложных структур. Размеры среднего вируса составляют около одной сотой размеров средней бактерии. Большинство вирусов слишком малы, чтобы быть отчётливо различимыми под световым микроскопом.
Вирусы являются облигатными паразитами, так как не способны размножаться вне клетки. Вне клетки вирусные частицы не проявляют признаки живого и ведут себя как частицы биополимеров. От живых паразитарных организмов вирусы отличаются полным отсутствием основного и энергетического обмена и отсутствием сложнейшего элемента живых систем — аппарата трансляции (синтеза белка), степень сложности которого превышает таковую самих вирусов.
Появление вирусов на эволюционном древе жизни неясно: некоторые из них могли образоваться из плазмид, небольших молекул ДНК, способных передаваться от одной клетки к другой, в то время как другие могли произойти от бактерий. В эволюции вирусы являются важным средством горизонтального переноса генов, обусловливающего генетическое разнообразие[9]. Некоторые[кто?] считают вирусы особой формой жизни, так как они имеют генетический материал, способны создавать себе подобные вирусы, и эволюционируют путем естественного отбора. Однако у вирусов отсутствуют важные характеристики (такие как клеточное строение), без которых их нельзя отнести к живому. Так как они обладают некоторыми, но не всеми свойствами, вирусы описываются как: «организмы на краю жизни», и как репликаторы[источник не указан 146 дней].
Вирусы распространяются многими способами: вирусы растений часто передаются от растения к растению насекомыми, питающимися растительными соками, к примеру, тлями; вирусы животных могут распространяться кровососущими насекомыми, такие организмы известны как переносчики. Вирус гриппа распространяется воздушно-капельным путём при кашле и чихании. Норовирус и ротавирус, обычно вызывающие вирусные гастроэнтериты, передаются фекально-оральным путём при контакте с заражённой пищей или водой. ВИЧ является одним из нескольких вирусов, передающихся половым путём и при переливании заражённой крови. Каждый вирус имеет определённую специфичность к хозяевам, определяющуюся типами клеток, которые он может инфицировать. Круг хозяев может быть узок или, если вирус поражает многие виды, широк[10].
У животных вирусные инфекции вызывают иммунный ответ, который чаще всего приводит к уничтожению болезнетворного вируса. Иммунный ответ также можно вызвать вакцинами, дающими активный приобретённый иммунитет против конкретной вирусной инфекции. Однако некоторым вирусам, в том числе вирусу иммунодефицита человека и возбудителям вирусных гепатитов, удаётся ускользнуть от иммунного ответа, вызывая хроническую болезнь. Антибиотики не действуют на вирусы, однако было разработано несколько противовирусных препаратов.
Основным структурным компонентом вирионов (полных вирусных частиц) является нуклеокапсид, т.е. белковый чехол (капсид) в котором заключен вирусный геном (ДНК или РНК). Нуклеокапсид большинства семейств вирусов окружен липопротеиновой оболочкой. Между оболочкой и нуклеокапсидом у некоторых вирусов (орто-, парамиксо-, рабдо-, фило- и ретровирусов) находится негликозилированный матриксный белок, придающий дополнительную жесткость вирионам. Вирусы большинства семейств имеют оболочку, которая играет важную роль в инфекционности. Наружный слой оболочки вирионы приобретают, когда нуклеокапсид проникает через клеточную мембрану почкованием.
Белки оболочки кодируются вирусом, а липиды заимствуются из мембраны клетки. Гликопротеины обычно в виде димеров и тримеров образуют пепломеры (выступы) на поверхности вирионов (орто-, парамиксовирусы, рабдо-, фило-, корона-, бунья-, арена-, ретровирусы). Гликозилированные белки слияния связаны с пепломерами и выполняют ключевую роль в проникновении вируса в клетку. Капсиды и оболочки вирионов образуются множеством копий одного или нескольких видов белковых субъединиц в результате процесса самосборки. Взаимодействие в системе белок-белок, благодаря слабым химическим связям, ведет к объединению симметричных капсидов.
Различия вирусов по форме и размеру вирионов зависят от формы, размера и количества структурных белковых субъединиц и природы взаимодействия между ними.
Капсид состоит из множества морфологически выраженных субъединиц (капсомеров), собранных из вирусных полипептидов строго определенным образом, в соответствии с относительно простыми геометрическими принципами. Белковые субъединицы, соединяясь друг с другом, образуют капсиды двух видов симметрии: изометрические и спиральные. Структура нуклеокапсида оболочечных вирусов сходна со структурой нуклеокапсида безоболочечных вирусов. На поверхности оболочки вирусов различают морфологически выраженные гликопротеиновые структуры — пепломеры.
В состав суперкапсидной оболочки входят липиды (до 20—35%) и углеводы (до 7—8%), имеющие клеточное происхождение. Она состоит из двойного слоя клеточных липидов и вирусспецифических белков, расположенных снаружи и изнутри липидного биослоя. Наружный слой суперкапсидной оболочки представляют пепломеры (выступы) одного или более типов, состоящие из одной или нескольких молекул гликопротеинов. Нуклеокапсид у оболочечных вирусов часто называют сердцевиной (core), а центральную часть вирионов, содержащую нуклеиновую кислоту, называют нуклеоидом.
Капсомеры (пепломеры) состоят из структурных единиц, построенных из одной либо из нескольких гомологичных или гетерологичных полипептидных цепей (белковых субъединиц).
Изометрические капсиды представляют собой не сферы, а правильные многогранники (икосаэдры). Их линейные размеры идентичны по осям симметрии. Согласно Каспару и Клугу (1962), капсомеры в капсидах расположены в соответствии с икосаэдрической симметрией.
Такие капсиды состоят из идентичных субъединиц, образующих икосаэдр. Они имеют 12 вершин (углов), 30 граней и 20 поверхностей в виде равнобедренных треугольников. В соответствии с этим правилом капсид полиовируса и вируса ящура образован 60 белковыми структурными единицами, каждая из которых состоит из четырех полипептидных цепей.
Икосаэдр оптимально решает проблему укладки повторяющихся субъединиц в строгую компактную структуру при минимальном объеме. Только некоторые конфигурации структурных субъединиц могут сформировать поверхности, образовать вершины и грани вирусного икосаэдра. Например, структурные субъединицы аденовируса на поверхностях и гранях формируют шестигранные капсомеры (гексоны), а на вершинах - пятигранные капсомеры (пептоны). У одних вирусов оба вида капсомеров образуются одними и теми же полипептидами, у других — разными полипептидами. Так как структурные субъединицы разных вирусов различаются между собой, то одни вирусы кажутся более гексагональными, другие — более сферическими.
Все известные ДНК-содержащие вирусы позвоночных, за исключением вирусов оспы, а также многие РНК-содержащие вирусы (7 семейств) имеют кубический тип симметрии капсида.
Реовирусы, в отличие от других вирусов позвоночных, имеют двойной кап-сид (наружный и внутренний), причем каждый состоит из морфологических единиц.
Вирусы, обладающие спиральным типом симметрии, имеют вид цилиндрической нитевидной структуры, их геномная РНК имеет вид спирали и находится внутри капсида. Все вирусы животных спиральной симметрии окружены липопротеиновой оболочкой.
Спиральные нуклеокапсиды характеризуются длиной, диаметром, шагом спирали и числом капсомеров, приходящихся на один оборот спирали. Так, у вируса Сендай (парамиксовирус) нуклеокапсид представляет собой спираль длиной около 1 мкм, диаметром 20 нм и шагом спирали 5 нм. Капсид состоит примерно из 2400 структурных единиц, каждая из которых является белком с молекулярной массой 60 кД. На каждый виток спирали приходится 11—13 субъединиц.
У вирусов со спиральным типом симметрии нуклеокапсида укладка белковых молекул в спираль обеспечивает максимальное взаимодействие между нуклеиновой кислотой и белковыми субъединицами. У икосаэдрических вирусов нуклеиновая кислота находится внутри вирионов в скрученном состоянии и взаимодействует с одним или несколькими полипептидами, расположенными внутри капсида.
Известны следующие типы взаимодействий «вирус-клетка»: продуктивный (образуется дочерняя популяция), интегративный (вирогения), абортивный (дочерняя популяция не образуется) и интерференция вирусов (инфицирование чувствительной клетки разными вирусами).
Продуктивное взаимодействие «вирус-клетка» чаще носит литический характер, то есть заканчивается гибелью и лизисом инфицированной клетки, что происходит после полной сборки дочерней популяции. Гибель клетки вызывают следующие факторы: раннее подавление синтеза клеточных белков, накопление токсических и повреждающих клетку вирусных компонентов, повреждение лизосом и высвобождение их ферментов в цитоплазму.
Интегративное взаимодействие, или вирогения, не приводит к гибели клетки. Нуклеиновая кислота вируса встраивается в геном клетки-хозяина и в последующем функционирует как его составная часть. Наиболее яркие примеры подобного взаимодействия — лизогения бактерий и вирусная трансформация клеток.
Абортивное взаимодействие не приводит к появлению дочерней популяции и происходит при взаимодействии вируса с покоящейся клеткой (стадия клеточного цикла G0) либо при инфицировании клетки вирусом с изменёнными (дефектными) свойствами. Следует различать дефектные вирусы и дефектные вирионы. Первые существуют как самостоятельные виды и функционально неполноценны, так как для их репликации необходим «вирус-помощник» (например, для репликации аденоассоциированного вируса необходимо присутствие аденовирусов). Вторые составляют дефектную группу, формирующуюся при образовании больших дочерних популяций (например, могут образовываться пустые капсиды либо безоболочечные нуклео-капсиды). Особая форма дефектных вирионов — псевдовирионы, включившие в капсид нуклеиновую кислоту клетки-хозяина.
Интерференция вирусов происходит при инфицировании клетки двумя вирусами. Различают гомологичную (при инфицировании клетки родственными вирусами) и гетерологичную (если интерферируют неродственные виды) интерференцию. Это явление возникает не при всякой комбинации возбудителей, иногда два разных вируса могут репродуцироваться одновременно (например, вирусы кори и полиомиелита). Интерференция реализуется либо за счёт индукции одним вирусом клеточных ингибиторов (например, ИФН), подавляющих репродукцию другого, либо за счёт повреждения рецепторного аппарата или метаболизма клетки первым вирусом, что исключает возможность репродукции второго.
Эта система включает в себя семь основных групп[138][139]:
(I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).
(II) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы). В этом случае ДНК всегда положительной полярности.
(III) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
(IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).
(V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
(VI) Вирусы, содержащие одноцепочечную положительную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
(VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B)[140].
