- •Научные методы познания окружающего мира. Роль эксперимента в теории в процессе познания. Научные гипотезы. Физические законы. Физические теории.
- •Механическое движение и его виды. Относительность движения. Система отсчета. Скорость. Ускорение. Прямолинейное равноускоренное движение.
- •Первый закон Ньютона. Инерциальные системы отсчета. Взаимодействие тел. Сила. Масса. Второй закон Ньютона. Третий закон Ньютона.
- •Импульс тела. Закон сохранения импульса. Реактивное движение в природе и технике.
- •Закон всемирного тяготения. Сила тяжести. Невесомость
- •Силы трения скольжения. Сила упругости. Закон Гука.
- •Работа. Механическая энергия. Кинетическая и потенциальная энергия. Закон сохранения механической энергии.
- •Механические колебания. Свободные и вынужденные колебания. Резонанс. Превращение энергии при механических колебаниях.
- •Давление газа. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы..
- •Билет 11.
- •Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Адиабатный процесс. Второй закон термодинамики.
- •Двигатели внутреннего сгорания
- •Конденсаторы. Электроемкость конденсатора. Энергия заряженного конденсатора. Применение конденсаторов.
- •Билет 15
- •Билет 16
- •Магнитное поле действует только на подвижные заряды с определенной силой;
- •2. Магнитное поле порождается электрическим током (движущимися зарядами);
- •3. Магнитное поле обнаруживается по действию на электрический ток (на движущиеся заряды)
- •Билет 17.
- •Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.
- •Билет 19
- •Явление самоиндукции. Индуктивность. Энергия магнитного поля
- •Билет 21.
- •Билет № 22
- •1. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Квантовые постулаты Бора. Лазеры. Испускание и поглощение света атомами. Спектры.
- •Билет 23 Квантовые свойства света. Фотоэффект и его законы. Применение фотоэффекта в технике.
- •Билет 24
- •Состав ядра атома. Ядерные силы. Дефект массы и энергия связи ядра атома. Ядерные реакции. Ядерная энергетика.
- •Билет 25
- •Билет 26
- •Смотри видео «3d-путешествие по Солнечной системе». Жми
Билет № 22
1. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Квантовые постулаты Бора. Лазеры. Испускание и поглощение света атомами. Спектры.
В науке очень долго считалось, что Атом – это наименьшая, НЕДЕЛИМАЯ частиц вещества.
1.Первым, кто нарушил эти представления был Томсон: он считал, что атом – это некая положительная субстанция, в которую «как изюминки в кекс» вкраплены электроны. Важность этой теории – то, что атом перестали признавать неделимым |
|
2. Резерфорд поставил опыт по рассеиванию альфа-частиц. Радиоактивным веществом бомбардировались тяжелые элементы (золотая фольга). Резерфорд ожидал увидеть светящиеся круги, а увидел светящиеся кольца.
|
|
Объяснение Резерфорда: в центре атома находится весь положительный заряд, а электроны ни оказывают никакого влияния на поток альфа-частиц |
|
3. Планетарная модель атома водорода по БОРУ
|
+ - |
Квантовые постулаты Бора: 1. Электрон, вращаясь по стационарной орбите энергии не излучает. 2. Поглощая или излучая энергию электрон соответственно поднимается на более дальнюю о ядра орбиту (уровень), либо опускается на более близкий к ядру уровень.
|
Вынужденное излучение |
Спонтанное излучение |
Излучая порцию энергии (видимой) атом дает только ему присущий набор длин волн – спектр.
Виды спектров:
Спектр излучения (испускания): (дают тела в нагретом состоянии)
а) Сплошной – дают все атомы в твердом, жидком состоянии или плотные газы
б) Линейчатый – дают атомы в газообразном состоянии
Спектр поглощения: если через вещество пропустить свет, то это вещество будет поглощать именно те волны, которые излучает в нагретом состоянии (на сплошном спектре появляются темные полоски)
Спектральный анализ – это метод определения химического состава вещества по его спектру излучения или поглощения.
Метод основан на том, что каждому химическому элементу присущ свой набор длин волн.
Применение спектрального анализа: в криминалистике, медицине, в астрофизике.
Спектрограф – это прибор, для проведения спектрального анализа. Спектроскоп отличается от спектрографа тем, что с помощью него можно не просто наблюдать за спектрами, но и сделать фотографический снимок спектра.
Билет 23 Квантовые свойства света. Фотоэффект и его законы. Применение фотоэффекта в технике.
Квантовые свойства света
В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается не непрерывно, а отдельными порциями — квантами (или фотонами). Энергия Е каждого фотона определяется формулой Е = hv, где h — коэффициент пропорциональности — постоянная Планка, v— частота света. Опытным путем вычислили h = 6,63·10-34 Дж·с. Гипотеза M.Планка объяснила многие явления, а именно, явление фотоэффекта, открытого в 1887 г. немецким ученым Г. Герцем. Далее фотоэффект изучил экспериментально русский ученый Столетов.
Фотоэффект и его законы
схема
опыта Столетова
Фотоэффект — это вырывание электронов из вещества под действием света. В результате исследований было установлено 3 закона фотоэффекта: 1. Фототок насыщения прямо пропорционален падающему световому потоку. 2. Максимальная кинетическая энергия фотоэлектронов линейно растает с частотой света и зависит от его интенсивности. 3. Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах фотоэффекта нет.
Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергию. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (Авых). Работа выхода — это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. Она зависит от типа металла и состояния его поверхности. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид:
—
это уравнение
Эйнштейна.
Если hv < Авых , то фотоэффекта не происходит. Предельную частоту vmin и предельную длину волны λmax называют красной границей фотоэффекта. Она выражается так: vmin =A/h , λmax= λкр = hc/A, где λmax ( λкр ) – максимальная длина волны , при которой фотоэффект еще наблюдается. Красная граница фотоэффекта для разных веществ различна, т.к. А зависит от рода вещества.
Применение фотоэффекта в технике. Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.
Существуют полупроводниковые фотоэлементы, в которых под действием света происходит изменение концентрации носителей тока. На этом явлении (внутреннего фотоэффекта) основано устройство фоторезисторов. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в часах, микрокалькуляторах. Полупроводниковые фотоэлементы используются в солнечных батареях на космических кораблях, в первых автомобилях. С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.

Поглощение
света