- •Вопросы по Биохимии для лечебного факультета на 2014/2015 учебный год
- •4. Изменение суммарного заряда аминокислот в зависимости от рН среды
- •Суперсемейство иммуноглобулинов
- •Внутриклеточная локализация ферментов. Различия ферментного состава органов и тканей. Органоспецифичные ферменты. Понятие о мультиферментных комплексах. Мультисубстратные реакции.
- •Энзимодиагностика заболеваний. Изоферменты. Диагностическое значение определения изоферментов (лдг, креатинкиназа). Энзимотерапия. Виды энзимопатий.
- •1. Строение пируватдегидрогеназного комплекса
- •2. Окислительное декарбоксилирование пирувата
- •3. Связь окислительного декарбоксилирования пирувата с цпэ
- •Цитратный цикл: последовательность реакций, ферменты связь с цпэ. Энергетическая эффективность и аллостерическая регуляция процесса. Реакции, пополняющие цитратный цикл.
- •1. Протонный градиент и электрохимический потенциал
- •Строение основных пуриновых и пиримидиновых нуклеотидов. Структурная организация молекулы днк: первичная, вторичная, третичная, четвертичная структуры. Генетический код, его свойства.
- •Переваривание нуклеиновых кислот. Катаболизм пиримидиновых нуклеотидов: стадии процесса, ферменты. Нарушения обмена пиримидиновых нуклеотидов. Оротацидурия.
- •Биосинтез пиримидиновых нуклеотидов: стадии процесса, ферменты. Запасные пути синтеза пиримидиновых нуклеотидов. Регуляция биосинтеза пиримидиннуклеотидов.
- •Биосинтез пуриновых нуклеотидов: происхождение атомов азота и углерода в пуриновом кольце, стадии процесса, ферменты, регуляция. Запасные пути синтеза пуриновых нуклеотидов. Синдром Леша-Нихена.
- •Катаболизм пуриновых нуклеотидов. Гиперурикемия и подагра.
- •Биосинтез рнк (транскрипция): механизм и биологическое значение. Основные этапы: инициация, элонгация, терминация, посттранскрипционный процессинг и-рнк.
- •2. Элонгация
- •3. Терминация
- •Ингибиторы матричных синтезов (ингибиторы репликации и транскрипции. Роль антибиотиков. Вирусы, токсины, система интерферона.
- •1. Образование и роль соляной кислоты
- •2.Механизм активации пепсина
- •3.Возрастные особенности переваривания белков в желудке
- •4. Нарушения переваривания белков в желудке
- •1. Активация панкреатических ферментов
- •2. Специфичность действия протеаз
- •Гниение белков (аминокислот) в толстом кишечнике. Механизмы обезвреживания образующихся продуктов (фенол, крезол, индол, скатол) в печени.
- •Тканевой распад белков, маркеры «стареющих» белковых молекул. Ферменты, принимающие участие в деградации белков.
- •1. Механизм реакции
- •2. Органоспецифичные аминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •Прямое и непрямое окислительное дезаминирование аминокислот. Последовательность реакций, ферменты, биологическая роль.
- •Суммарное уравнение синтеза мочевины:
- •Пути обмена безазотистого остатка аминокислот. Гликогенные и кетогенные аминокислоты, участие в анаплеротических реакциях общего пути катаболизма.
- •Декарбоксилирование аминокислот, образование биогенных аминов: гистамина, триптамина, серотонина, гамк. Роль биогенных аминов в регуляции метаболизма и функции. Инактивация биогенных аминов.
- •Гликогенез, ферменты, регуляция, биологическая роль гликогена.
- •Гликогенолиз, виды, ферменты гликогенолиза и его значение для организма. Регуляция. Гликогенозы.
- •Анаэробный гликолиз, гликолитическая оксидоредукция. Пируват как акцептор водорода; субстратное фосфорилирование. Ферменты гликолиза и «узкие звенья» гликолиза. Энергетическая эффективность.
- •Глюконеогенез, ключевые ферменты, значение в метаболизме плода. Регуляция гликолиза и глюконеогенеза в печени. Цикл Кори. Глюкозо-аланиновый цикл.
- •Метаболизм фруктозы и галактозы, химизм процессов. Биохимические аспекты гликоземии.
- •Классификация липидов. Нейтральные жиры, их биологическая роль. Эссенциальные жирные кислоты, витамин f.
- •Холестерол, структура, содержание в сыворотке крови, биологическая роль.
- •Дислипопротеинемии, роль в диагностике заболеваний.
- •Синтез триацилглицеридов в печени и жировой ткани. Регуляция. Жировые депо организма. Ожирение, его виды.
- •Липолиз триглицеридов. Бурая жировая ткань. Тканевое окисление глицерина. Энергетическая эффективность.
- •Пути использования ацетил КоА. Механизм образования и значение ацетоуксусной кислоты. Биосинтез кетоновых тел. Кетоацидоз.
- •Биосинтез холестерола: стадии процесса, регуляция. Транспорт холестерола (лпонп, лпнп, лпвп, роль лхат).
- •Гиперхолестеролемия и развитие атеросклероза. Лпвп как антиатерогенный фактор.
- •Регуляция липидного обмена. Роль печени в нарушении липидного обмена. Жировая дистрофия печени и факторы ее вызывающие.
- •1. Структура и свойства липидов мембран
- •2. Классификация гормонов по биологическим функциям
- •3. Гонадолиберин
- •Характеристика и функции гормонов передней доли гипофиза. Регуляция образования и механизм действия. Соматотропный гормон.
- •4. Заболевания щитовидной железы
- •2.Регуляция секреции эстрогенов
- •3. Механизм действия и биологические эффекты эстрогенов
- •4. Образование прогестерона
- •5. Биологические эффекты прогестерона
- •2. Регуляция синтеза и секреции андрогенов
- •Гомоновитамин д, его роль в регуляции обмена кальция и фосфатов. Суточная потребность. Авитаминоз д, его проявления. Понятие о гипервитаминозе д.
- •1. Биосинтез и метаболизм кортикостероидов
- •2. Биологические функции кортикостероидов отличаются широким спектром влияний на процессы метаболизма и подробно рассматриваются в соответствующих разделах.
- •3. Изменения метаболизма при гипо и гиперфункции коры надпочечников
- •Гормоны мозгового слоя надпочечников. Синтез и секреция катехоламинов. Механизм действия, биологические функции.
- •1. Синтез и секреция катехоламинов
- •2. Механизм действия и биологические функции катехоламинов
- •2. Биологические функции инсулина
- •3. Механизм действия инсулина
- •4. Глюкагон
- •2. Инсулинонезависимый сахарный диабет
- •1. Симптомы сахарного диабета
- •Ренин-ангиотензин-альдостероновая система в регуляции водно-солевого обмена.
- •Предсердный натрийуретический фактор, его роль в регуляции осмотического и артериального давления.
- •2. Механизм действия
- •3. Несахарный диабет
- •1. Механизм действия альдостерона
- •Белки крови. Отдельные белковые фракции, разделение методом электрофореза, характеристика. Небелковые компоненты крови. Возрастная динамика белковых фракций.
- •2. Строение гемоглобина а
- •3. Связывание гемоглобина с о2 в лёгкихи его диссоциация из комплекта в тканях
- •Особенности метаболизма эритроцитов Образование и обезвреживание активных форм кислорода в эритроцитах. Нарушение активности глюкозо-6 фдг. Развитие гемолитической анемии.
- •Биосинтез гема. Нарушение биосинтеза гема. Порфирии.
- •Гемоглобинопатии. Молекулярные основы серповидно-клеточной анемии. Талассемии.
- •Обмен железа: всасывание, транспорт, депонирование. Нарушения обмена железа: железодефицитная анемия.
- •Гемостаз, понятие. Каскадный механизм гемокоагуляции.
- •Причины включения внутреннего и внешнего механизма гемостаза
- •Роль тромбоцитов в гемостазе. Фактор фон Виллебранда и его роль в тромбозе
- •Образование, стабилизация и деградация фибрина
- •Противосвертывающая система и ингибиторы ферментов свертывания крови.
- •Общая характеристика хромопротеидов. Структура и биологическая роль миоглобина, цитохромов, каталазы, пероксидазы.
- •Порфирины как структурные компоненты хромопротеидов. Порфирии и порфиринурии.
- •1. Гемолитическая (надпечёночная) желтуха
- •2. Печёночно-клеточная (печёночная) желтуха
- •3. Механическая, или обтурационная (подпечёночная) желтуха
- •Биохимия печени. Роль печени в обмене белков, углеводов, липидов.
- •2. Функционирование цитохрома р450
- •Все ферменты, функционирующие во второй фазе обезвреживания ксенобиотиков, относят к классу трансфераз.
- •Биохимические изменения при мышечных дистрофиях. Показатель креатин/креатинин показатель, диагностическое значение.
- •2. Строение и функция эластина
- •Особенности химического состава нервной ткани. Миелиновые мембраны: особенности состава и структуры.
- •Нарушения обмена биогенных аминов. Предшественники катехоламинов и ингибиторы моноаминооксидазы в лечении депрессивных состояний.
Внутриклеточная локализация ферментов. Различия ферментного состава органов и тканей. Органоспецифичные ферменты. Понятие о мультиферментных комплексах. Мультисубстратные реакции.
Внутриклеточные ферменты локализованы либо в клеточных органеллах, либо в комплексе с надмолекулярными структурами. Установлено, что в ядре клетки локализованы ферменты, принимающие участие в синтезе РНК, ДНК; с митохондриями связаны ферменты окисления жирных кислот, продуктов распада углеводов, ЦТК т.е. ферменты, играющие важную роль в биоэнергетике клетки; в лизосомах в основном содержатся ферменты гидролиза; с рибосомами связаны ферменты белкового синтеза, в цитоплазме: гликолиз, глюконеогенез, синтез белка, синтез ЖК, синтез холестерина.
Органоспецифические ферменты преимущественно локализованы в определенных органах. Как правило, эти ферменты катализируют реакции, обеспечивающие специфические функции органа. В клетках других органов этих ферментов нет или только находят их следы. Выход органоспецифических ферментов в кровь сигнализирует о поражении определенного органа. АЛТ и A T — органоспецифические ферменты, в норме в крови активность их мала — 5—40 ЕД/л. Эти различия, по-видимому, связаны с метаболической специализацией. Такие органоспецифические ферменты используются для клинической диагностики например, в ряде случаев при повреждениях мышечной ткани наблюдается увеличение количества креатинкиназы в сыворотке крови.
Мультиферментные комплексы — это объединение нескольких ферментов, катализирующих последовательные превращения субстрата (цепочечные реакции). Часто составляющие комплекс энзимы в строгой последовательности фиксированы в мембранах, в частности, эндоплазматической сети и аппарата Гольджи (рибосомы, синтетаза жирных кислот и др.). Конвейерный принцип работы значительно ускоряет получение конечного продукта реакции и позволяет более эффективно регулировать процесс.
Большинство ферментов катализирует реакции, в которых участвует более чем один субстрат. В случае если кофермент не является простетической группой, его также можно рассматривать как ещё один субстрат. Следовательно, участников ферментативной реакции может быть несколько: непосредственно фермент, несколько субстратов и кофермент.
В этих случаях механизм ферментативной реакции, как правило, может идти по одному из двух путей: по механизму "пинг-понг" (механизму двойного замещения) или последовательному. Субстрат А, взаимодействуя с ферментом (Е), превращается в продукт (Р1). Фермент остаётся в результате этого преобразования не в нативной форме, а в изменённой (Е') в результате модификации кофермента. Далее к активному центру Е' присоединяется субстрат В, подвергающийся преобразованию в продукт (Р2) с высвобождением нативной формы фермента (Е). Хороший пример механизма "пинг-понг" - реакции трансаминирования с участием ферментов аминотрансфераз.
В случае последовательного механизма для протекания ферментной реакции требуется одновременно взаимодействие двух субстратов. В этом случае возможно присоединение субстратов двумя различными путями:
Механизм упорядоченного взаимодействия субстрата с активным центром фермента:
Первым в активный центр фермента присоединяется субстрат А, облегчая присоединение субстрата В. После химической модификации также наблюдают определённый порядок высвобождения продуктов реакции.
Механизм случайного взаимодействия субстрата с активным центром фермента:
Приоритетности за взаимодействие субстратов А и В в активном центре фермента нет (каждый субстрат имеет свой центр связывания в активном центре). Также нет строгой закономерности высвобождения продуктов реакции.
Примером последовательного упорядоченного механизма может быть реакция дегидрирования с участием коферментов NAD+, NADP+.
Понятие о метаболизме и метаболических путях. Способы регуляции скорости ферментативной реакции. Способы регуляции каталитической активности молекулы фермента. Ингибиторы ферментов. Обратимое и необратимое ингибирование. Лекарственные препараты как ингибиторы ферментов.
В клетке постоянно происходит большое количество разнообразных химических реакций, которые формируют метаболические пути - последовательное превращение одних соединений в другие. Метаболизм - совокупность всех метаболических путей, протекающих в клетках организма.
Среди всех метаболических путей, протекающих в организме, выделяют противоположно направленные процессы: катаболизм и анаболизм. Катаболизм - распад сложных веществ до простых с высвобождением энергии. Анаболизм - синтез из простых более сложных веществ. Метаболические пути согласованы между собой по месту, времени и интенсивности протекания.
Регуляция скорости ферментативных реакций осуществляется на 3 независимых уровнях:
изменением количества молекул фермента;
доступностью молекул субстрата и кофер-мента;
изменением каталитической активности молекулы фермента.
Основные способы регуляции активности ферментов:
аллостерическая регуляция;
регуляция с помощью белок-белковых взаимодействий;
активация ферментов в результате присоединения регуляторных белков;
изменение каталитической активности ферментов вследствие ассоциации или диссоциации протомеров фермента.
регуляция путём фосфорилирования/дефосфорилирования молекулы фермента;
регуляция частичным (ограниченным) протеолизом.
