- •Вопросы по Биохимии для лечебного факультета на 2014/2015 учебный год
- •4. Изменение суммарного заряда аминокислот в зависимости от рН среды
- •Суперсемейство иммуноглобулинов
- •Внутриклеточная локализация ферментов. Различия ферментного состава органов и тканей. Органоспецифичные ферменты. Понятие о мультиферментных комплексах. Мультисубстратные реакции.
- •Энзимодиагностика заболеваний. Изоферменты. Диагностическое значение определения изоферментов (лдг, креатинкиназа). Энзимотерапия. Виды энзимопатий.
- •1. Строение пируватдегидрогеназного комплекса
- •2. Окислительное декарбоксилирование пирувата
- •3. Связь окислительного декарбоксилирования пирувата с цпэ
- •Цитратный цикл: последовательность реакций, ферменты связь с цпэ. Энергетическая эффективность и аллостерическая регуляция процесса. Реакции, пополняющие цитратный цикл.
- •1. Протонный градиент и электрохимический потенциал
- •Строение основных пуриновых и пиримидиновых нуклеотидов. Структурная организация молекулы днк: первичная, вторичная, третичная, четвертичная структуры. Генетический код, его свойства.
- •Переваривание нуклеиновых кислот. Катаболизм пиримидиновых нуклеотидов: стадии процесса, ферменты. Нарушения обмена пиримидиновых нуклеотидов. Оротацидурия.
- •Биосинтез пиримидиновых нуклеотидов: стадии процесса, ферменты. Запасные пути синтеза пиримидиновых нуклеотидов. Регуляция биосинтеза пиримидиннуклеотидов.
- •Биосинтез пуриновых нуклеотидов: происхождение атомов азота и углерода в пуриновом кольце, стадии процесса, ферменты, регуляция. Запасные пути синтеза пуриновых нуклеотидов. Синдром Леша-Нихена.
- •Катаболизм пуриновых нуклеотидов. Гиперурикемия и подагра.
- •Биосинтез рнк (транскрипция): механизм и биологическое значение. Основные этапы: инициация, элонгация, терминация, посттранскрипционный процессинг и-рнк.
- •2. Элонгация
- •3. Терминация
- •Ингибиторы матричных синтезов (ингибиторы репликации и транскрипции. Роль антибиотиков. Вирусы, токсины, система интерферона.
- •1. Образование и роль соляной кислоты
- •2.Механизм активации пепсина
- •3.Возрастные особенности переваривания белков в желудке
- •4. Нарушения переваривания белков в желудке
- •1. Активация панкреатических ферментов
- •2. Специфичность действия протеаз
- •Гниение белков (аминокислот) в толстом кишечнике. Механизмы обезвреживания образующихся продуктов (фенол, крезол, индол, скатол) в печени.
- •Тканевой распад белков, маркеры «стареющих» белковых молекул. Ферменты, принимающие участие в деградации белков.
- •1. Механизм реакции
- •2. Органоспецифичные аминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •Прямое и непрямое окислительное дезаминирование аминокислот. Последовательность реакций, ферменты, биологическая роль.
- •Суммарное уравнение синтеза мочевины:
- •Пути обмена безазотистого остатка аминокислот. Гликогенные и кетогенные аминокислоты, участие в анаплеротических реакциях общего пути катаболизма.
- •Декарбоксилирование аминокислот, образование биогенных аминов: гистамина, триптамина, серотонина, гамк. Роль биогенных аминов в регуляции метаболизма и функции. Инактивация биогенных аминов.
- •Гликогенез, ферменты, регуляция, биологическая роль гликогена.
- •Гликогенолиз, виды, ферменты гликогенолиза и его значение для организма. Регуляция. Гликогенозы.
- •Анаэробный гликолиз, гликолитическая оксидоредукция. Пируват как акцептор водорода; субстратное фосфорилирование. Ферменты гликолиза и «узкие звенья» гликолиза. Энергетическая эффективность.
- •Глюконеогенез, ключевые ферменты, значение в метаболизме плода. Регуляция гликолиза и глюконеогенеза в печени. Цикл Кори. Глюкозо-аланиновый цикл.
- •Метаболизм фруктозы и галактозы, химизм процессов. Биохимические аспекты гликоземии.
- •Классификация липидов. Нейтральные жиры, их биологическая роль. Эссенциальные жирные кислоты, витамин f.
- •Холестерол, структура, содержание в сыворотке крови, биологическая роль.
- •Дислипопротеинемии, роль в диагностике заболеваний.
- •Синтез триацилглицеридов в печени и жировой ткани. Регуляция. Жировые депо организма. Ожирение, его виды.
- •Липолиз триглицеридов. Бурая жировая ткань. Тканевое окисление глицерина. Энергетическая эффективность.
- •Пути использования ацетил КоА. Механизм образования и значение ацетоуксусной кислоты. Биосинтез кетоновых тел. Кетоацидоз.
- •Биосинтез холестерола: стадии процесса, регуляция. Транспорт холестерола (лпонп, лпнп, лпвп, роль лхат).
- •Гиперхолестеролемия и развитие атеросклероза. Лпвп как антиатерогенный фактор.
- •Регуляция липидного обмена. Роль печени в нарушении липидного обмена. Жировая дистрофия печени и факторы ее вызывающие.
- •1. Структура и свойства липидов мембран
- •2. Классификация гормонов по биологическим функциям
- •3. Гонадолиберин
- •Характеристика и функции гормонов передней доли гипофиза. Регуляция образования и механизм действия. Соматотропный гормон.
- •4. Заболевания щитовидной железы
- •2.Регуляция секреции эстрогенов
- •3. Механизм действия и биологические эффекты эстрогенов
- •4. Образование прогестерона
- •5. Биологические эффекты прогестерона
- •2. Регуляция синтеза и секреции андрогенов
- •Гомоновитамин д, его роль в регуляции обмена кальция и фосфатов. Суточная потребность. Авитаминоз д, его проявления. Понятие о гипервитаминозе д.
- •1. Биосинтез и метаболизм кортикостероидов
- •2. Биологические функции кортикостероидов отличаются широким спектром влияний на процессы метаболизма и подробно рассматриваются в соответствующих разделах.
- •3. Изменения метаболизма при гипо и гиперфункции коры надпочечников
- •Гормоны мозгового слоя надпочечников. Синтез и секреция катехоламинов. Механизм действия, биологические функции.
- •1. Синтез и секреция катехоламинов
- •2. Механизм действия и биологические функции катехоламинов
- •2. Биологические функции инсулина
- •3. Механизм действия инсулина
- •4. Глюкагон
- •2. Инсулинонезависимый сахарный диабет
- •1. Симптомы сахарного диабета
- •Ренин-ангиотензин-альдостероновая система в регуляции водно-солевого обмена.
- •Предсердный натрийуретический фактор, его роль в регуляции осмотического и артериального давления.
- •2. Механизм действия
- •3. Несахарный диабет
- •1. Механизм действия альдостерона
- •Белки крови. Отдельные белковые фракции, разделение методом электрофореза, характеристика. Небелковые компоненты крови. Возрастная динамика белковых фракций.
- •2. Строение гемоглобина а
- •3. Связывание гемоглобина с о2 в лёгкихи его диссоциация из комплекта в тканях
- •Особенности метаболизма эритроцитов Образование и обезвреживание активных форм кислорода в эритроцитах. Нарушение активности глюкозо-6 фдг. Развитие гемолитической анемии.
- •Биосинтез гема. Нарушение биосинтеза гема. Порфирии.
- •Гемоглобинопатии. Молекулярные основы серповидно-клеточной анемии. Талассемии.
- •Обмен железа: всасывание, транспорт, депонирование. Нарушения обмена железа: железодефицитная анемия.
- •Гемостаз, понятие. Каскадный механизм гемокоагуляции.
- •Причины включения внутреннего и внешнего механизма гемостаза
- •Роль тромбоцитов в гемостазе. Фактор фон Виллебранда и его роль в тромбозе
- •Образование, стабилизация и деградация фибрина
- •Противосвертывающая система и ингибиторы ферментов свертывания крови.
- •Общая характеристика хромопротеидов. Структура и биологическая роль миоглобина, цитохромов, каталазы, пероксидазы.
- •Порфирины как структурные компоненты хромопротеидов. Порфирии и порфиринурии.
- •1. Гемолитическая (надпечёночная) желтуха
- •2. Печёночно-клеточная (печёночная) желтуха
- •3. Механическая, или обтурационная (подпечёночная) желтуха
- •Биохимия печени. Роль печени в обмене белков, углеводов, липидов.
- •2. Функционирование цитохрома р450
- •Все ферменты, функционирующие во второй фазе обезвреживания ксенобиотиков, относят к классу трансфераз.
- •Биохимические изменения при мышечных дистрофиях. Показатель креатин/креатинин показатель, диагностическое значение.
- •2. Строение и функция эластина
- •Особенности химического состава нервной ткани. Миелиновые мембраны: особенности состава и структуры.
- •Нарушения обмена биогенных аминов. Предшественники катехоламинов и ингибиторы моноаминооксидазы в лечении депрессивных состояний.
2. Органоспецифичные аминотрансферазы ант и act
Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных - глутамат, аланин, аспартат и соответствующие им кетокислоты - α-кетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат.
Акцептором аминогруппы любой аминокислоты, подвергающейся трансаминированию (аминокислота 1), служит α-кетоглутарат. Принимая аминогруппу, он превращается в глутамат, который способен передавать эту группу любой α-кетокислоте с образованием другой аминокислоты (аминокислота 2).
Аминотрансферазы обладают субстратной специфичностью к разным аминокислотам. В тканях человека обнаружено более 10 разных аминотрансфераз. Наиболее распространёнными ферментами в большинстве тканей млекопитающих являются аланинаминотрансфераза (АЛТ), по обратной реакции - глутамат-пируватаминотрансфераза (ГПТ) и аспартатаминотрансфераза (ACT), по обратной реакции - глутамат-оксалоацетатаминотрансфераза (ГОТ).
АЛТ (АлАТ) катализирует реакцию транса-минирования между аланином и α-кетоглутаратом.
Локализован этот фермент в цитозоле клеток многих органов, но наибольшее его количество обнаружено в клетках печени и сердечной мышцы.
ACT (АсАТ) катализирует реакцию трансами-нирования между аепартатом и α-кетоглутаратом аналогично предыдущей.
В результате образуются оксалоацетат и глутамат. ACT имеет как цитоплазматическую, так и митохондриальную формы. Наибольшее его количество обнаружено в клетках сердечной мышцы и печени.
Так как наибольшее количество АЛТ и ACT сосредоточено в печени и миокарде, а содержание в крови очень низкое, можно говорить об органоспецифичности этих ферментов.
В результате работы аминотрансфераз аминный азот многих аминокислот переходит в состав глутамата. Есть основания считать, что накопление аминогрупп в форме глутаминовой кислоты происходит в цитозоле. Затем глутамат с помощью транслоказ попадает в митохондрии, где активна специфическая ACT. В результате действия этого фермента глутамат снова превращается в α-кетоглутарат. Последний используется для непрямого дезаминирования аминокислот, содержащихся в митохондриях. Это очень важно, так как только глутамат в тканях млекопитающих наиболее быстро может подвергаться окислительному дезаминированию.
3. Биологическое значение трансаминирования
Реакции трансаминирования играют большую роль в обмене аминокислот. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование -заключительный этап синтеза заменимых аминокислот из соответствующих α-кетокислот, если они в данный момент необходимы клеткам. В результате происходит перераспределение аминного азота в тканях организма. Трансаминирование - первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. При трансаминировании общее количество аминокислот в клетке не меняется.
Диагностическое значение определения аминотрансфераз в клинической практике
В клинической практике широко используют определение активности ACT и АЛТ в сыворотке крови для диагностики некоторых заболеваний.
В норме в крови активность этих ферментов очень мала и составляет 5-40 Е/л. При повреждении клеток соответствующего органа ферменты выходят в кровь, где активность их резко повышается. Поскольку ACT и АЛТ наиболее активны в клетках печени, сердца и, в меньшей степени, скелетных мышц, их используют для диагностики болезней этих органов (см. раздел 2). В клетках сердечной мышцы количество ACT значительно превышает количество АЛТ, а в печени - наоборот. Поэтому особенно информативно одновременное измерение активности обоих ферментов в сыворотке крови. Соотношение активностей ACT/АЛТ называют "коэффициент де Ритиса". В норме этот коэффициент равен 1,33±0,42. При инфаркте миокарда активность ACT в крови увеличивается в 8-10 раз, а АЛТ - в 1,5-2,0 раза. Наиболее резко активность ACT увеличивается при некрозе ткани, так как выходит в кровь и цитоплазматическая и митохондриальная формы фермента. При инфаркте миокарда значение коэффициента де Ритиса резко возрастает.
При гепатитах активность АЛТ в сыворотке крови увеличивается в ∼8-10 раз по сравнению с нормой, a ACT - в 2-4 раза. Коэффициент де Ритиса снижается до 0,6. Однако при циррозе печени этот коэффициент увеличивается, что свидетельствует о некрозе клеток, при котором в кровь выходят обе формы ACT.
