Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции / 9. Мембрана Документ Microsoft Office Word.docx
Скачиваний:
9
Добавлен:
01.07.2020
Размер:
895.23 Кб
Скачать

3.5.2. Поняття активного транспорту речовини

Активний транспорт це перенесення речовини з місць з мен-шим значенням електрохімічного потенціалу в місця з його більшим значенням. Активний транспорт у мембрані супроводжується зрос-танням енергії Гібса, він не може здійснюватися мимовільно, а лише за рахунок витрати енергії, яка запасена в макроергічних зв’язках АТФ.

Активний транспорт речовин через біологічні мембрани має вели-чезне значення. За рахунок активного транспорту в організмі створю-ються градієнти концентрацій, градієнти електричних потенціалів, гра-дієнти тиску тощо, які підтримують життєві процеси, тобто з погляду термодинаміки активне перенесення утримує організм у нерівноважно-му стані, підтримує життя.

Активний транспорт через біологічні мембрани досліджував дан-ський учений Г. Уссінг (1949 р.) у дослідах з перенесення іонів натрію через шкіру жаби (рис. 3.19) [56]. Перенесення ґрунтувалося на вимірю-

143

ванні активного транспорту електричним методом (методом короткого замикання). Якщо розділити дві камери з однаковими розчинами Рінге-ра шкірою жаби, то між її зов-

І ≠ 0

нішньою (мукозною) та внут-

1

рішньою (серозною) поверх-

Na22

jm.вн

нями

виникає

різниця

jm.зов

2

потенціалів, яка приблизно до-

Na24

рівнює 100 мВ (потенціал на

Камера

Δφ=0

Шкіра жаби

зовнішній

поверхні

буде

від’ємним). При цьому спосте-

з електролітом

Рис. 3.19. Схема експериментальної

рігалися потоки іонів

натрію

установки Уссінга:

крізь шкіру жаби: від зовніш-

А амперметр, V вольтметр;

ньої до внутрішньої поверхні і

1 реостат; 2 конденсат; 3 гальванічний

елемент

від внутрішньої до зовнішньої

поверхні. Відношення потоків іонів у разі пасивного транспорту вира-жається рівнянням Уссінга:

j

C

e

ZF

k

e

RT

.

j

i

C

k

Регулюючи струм у компенсувальному колі, можна досягти різниці потенціалів до нуля. Тоді в системі має настати рівновага, оскільки не-має градієнтів концентрацій іонів і потенціалу між камерами, розділе-ними шкірою жаби. В таких умовах пасивне перенесення іонів згідно з критерієм Уссінга неможливе, сумарний потік дорівнює нулю.

Проте під час проведення експериментів було виявлено [94], що струм, який тече в компенсаційному колі, протікає і крізь шкіру. От-же, відбувається одностороннє перенесення іонів. Методом мічених атомів було показано, що потік іонів натрію від зовнішньої до внут-рішньої поверхні більший від потоку в протилежному напрямку. Та-ким чином, струм усередині епітелію створюється активним перене-сенням іонів натрію.

144

Згідно із сучасним уявленням активно транспортуються іонні насоси біологічних мембран – спеціальні білкові комплекси (транспортні АТФ). Відомі три типи електрогенних іонних насосів. Комплекс К+-Na+-АТФ за рахунок енергії гідролізу однієї молекули АТФ у клітину переносяться два іони калію і виносяться з клітини три іони натрію. Отже, насос генерує електричний струм через мембрану, тому К+–Na+-насос – електрогенний. Са+–АТФ переносить два іони кальцію, а Н+-насос – два протони з вико-ристанням енергії однієї молекули АТФ.

  • більшості моделей активного транспорту передбачається процес сполучення хімічної реакції гідролізу АТФ (скалярного процесу) з на-прямленим просторовим переміщенням (векторним процесом). У цьому випадку білок або білковий комплекс повинен виконувати як фермента-тивну, так і транспортну функції. Отже, у простому випадку він може містити один активний центр і один центр скріплення іонів. Для забез-печення транспорту іонів між двома мембранами передбачається, що центр скріплення іонів може поперемінно контактувати з обома розчи-нами, розділеними мембраною. Це, наприклад, мінорні рухи, які відкри-вають та закривають канали, сполучені з розділеними мембраною роз-чинами, або повернення всієї молекули ферменту в площину мембрани, що зумовлюють пересування центра скріплення іонів через мембрану. Можливі також зміни просторової форми макромолекули для перемі-

щення центра скріплення йонів.

Як показали дослідження, білок К+-Na+-АТФ існує в двох різних конформаціях – Е1 та Е2, при цьому Е1 має високу спорідненість з Na+ і низьким – з К+ (місця скріплення іонів орієнтовані до цитоплазми). Ця конформація білка має високу спорідненість з молекулами АТФ. Кон-формація Е2 ферменту має високу спорідненість з К+ і низьку – з Na+ (місця скріплення обернені назовні). При цьому Na+ потрібен для швид-кого фосфоритування, а К+ – для швидкого дефосфоритування.

Перехід іонів К+ із зв’язаного з ферментом стану у вільний стан ві-дбувається на завершальному п’ятому етапі. Цей процес індукується

145

скріпленням АТФ з алостеричним центром ферменту, який має низьку спорідненість.

Таким чином, у процесі активного транспорту молекула АТФ вико-нує дві функції – субстрати та алостеричного ефектора.

Запропоновані моделі будови, згідно з якими ці білкові комплекси містять 6, 8 або 10 трансмембранних α-спіральних сегментів. Є велика гідрофільна ділянка, що містить домени, де зв’язуються нуклеотиди і де відбувається фосфоритування. При цьому зміна конформації, що супро-воджується гідролізом АТФ, зумовлює зміну спорідненості відповідних центрів білка з іонами.

Створені за допомогою систем активного транспорту градієнти концентрацій речовин утворюють на мембрані різницю хімічного або електрохімічного потенціалу, за рахунок чого можуть переноситися ін-ші речовини проти градієнтів їх концентрацій. Такий транспорт, джере-лом енергії якого є не безпосередньо АТФ або енергія окиснювально-відновних реакцій, а градієнт концентрацій інших речовин називають вторинно-активним, або зв’язаним.

    • три види вторинно-активного транспорту іонів: уніпорт, симпорт

  • антипорт.

  • разі уніпорту за рахунок існування на мембрані градієнта елект-ричного потенціалу здійснюється однонапрямлений транспорт зарядже-них частинок у бік меншого значення потенціалу. У процесі антипорту (обмінного транспорту) здійснюється транспорт однаково заряджених іонів двох типів у різних напрямках. Згідно з механізмом симпорту (ко-транспорту) здійснюється транспорт протилежно заряджених іонів в одному напрямі. При цьому один з іонів транспортується за градієнтом концентрацій, а другий – за градієнтом електричного потенціалу, який створюється транспортом першого іона.

Одним з найбільш вивчених випадків вторинно-активного транс-порту незаряджених молекул є всмоктування глюкози в стінки кишеч-нику. Тут транспорт глюкози здійснюється проти градієнта концент-

146

рації, але не за рахунок енергії АТФ, а завдяки градієнту концентрації іншої речовини, у цьому випадку – іонів натрію. Подібні системи тра-нспорту існують і для багатьох інших речовин, наприклад вуглеводів і амінокислот, що дуже важливо, оскільки для них немає специфічних насосів.