- •2. Формы существования вирусов. Классификация вирусов по строению и характеру взаимодействия с геномом клетки-хозяина.
- •3. Структура и химический состав простых вирионов.
- •4. Структура и химический состав сложных вирионов.
- •5. Структурно-функциональная организация генома вирусов.
- •6. Способы реализации генетической информации у вирусов.
- •7. Основные гипотезы происхождения вирусов.
- •8. Критерии систематики вирусов.
- •10. Семейства, роды и виды рнк-вирусов. Вирусы позвоночных.
- •11. Подготовительная фаза репродукции вирусов. Фазы адсорбции вируса на клетке, проникновения и депротеинизации вирусной частицы.
- •Сборка вирионов при репродукции вирусов.
- •14. Заключительная стадия репродукции вирусов. Способы выхода зрелых вирионов из клетки-хозяина.
- •15.Репродуктивные типо-варианты Псевдовирусы. Вирусы-рекомбинанты.Вирусов
- •Вопрос 17
- •Вопрос 18
- •19 Вопрос
- •21. Умеренные фаги. Лизогения. Фаговая конверсия
- •22. Трнсдукция. Виды трансдукции (генерализованная, ограниченная, абортивная)
- •23. Изменчивость фагов. Мутации бляшек. Мутации в отношении диапазона действия
- •24. Распространение фагов. Практическое применение фагов в биологии и медицине
- •25. Понятие об инфекции. Восприимчивость и резистентность организмов к вирусам.
- •27, Проявления эпидемического процесса:
- •1.Спорадическая заболеваемость
- •2.Эпидемическая заболеваемость: вспышка, эпидемия, пандемия.
- •29. Классификация вирусных инфекций по характеру возникновения, тяжести проявления, течению, механизму передачи, источнику инфекции.
- •30. Медленные инфекции. Клинико-эпидемиологические особенности мви, вызванных прионами.
- •32 .Ви́рус иммунодефици́та челове́ка — ретровирус из рода лентивирусов, вызывающий медленно прогрессирующее[3]заболевание — вич-инфекцию[4][5].
- •33. Ультраструктура вируса иммунодефицита человека
- •34.Клинико-эпидемиологические особенности, специфическая профилактика и лечение гриппа. Ультраструктура вируса гриппа.
- •Клиническая картина
- •Клинико-эпидемиологические особенности, специфическая профилактика и лечение заболеваний, вызываемых парамиксовирусами. Ультраструктура парамиксовирусов.
- •Клинико-эпидемиологические особенности, специфическая профилактика и
- •Клинико-эпидемиологические особенности, специфическая профилактика и лечение герпесвирусных инфекций. Ультраструктура герпесвирусов.
- •39. Клинико-эпидемиологические особенности, специфическая профилактика и лечение реовирусных инфекций. Ультраструктура реовирусов.
- •40. Клинико-эпидемиологические особенности, специфическая профилактика и лечение натуральной оспы. Ультраструктура поксвируса натуральной оспы.
- •Клинико-эпидемиологические особенности, специфическая профилактика и лечение бешенства. Ультраструктура рабдовирусов.
- •Классификация антивирусных вакцин. Корпускулярные (живые и убитые), некорпускулярные, генноинженерные, антииддиотипические вакцины.
- •Классификация вакцин (а. А. Воробьев, 2004)
Вопрос 17
История открытия бактериофагов
Бактериофа́ги или фа́ги (— вирусы, избирательно поражающие бактериальные клетки. Чаще всего бактериофаги размножаются внутри бактерий и вызывают их лизис. Как правило, бактериофаг состоит из белковой оболочки и генетического материала одноцепочечной или двуцепочечной нуклеиновой кислоты (ДНК или, реже, РНК).
История:Английский бактериолог Фредерик Туорт в статье 1915 года описал инфекционную болезнь стафилококков, инфицирующий агент проходил через фильтры, и его можно было переносить от одной колонии к другой.
3 сентября 1917 года сообщил об открытии бактериофагов. Наряду с этим известно, что российский микробиолог Николай Фёдорович Гамалея ещё в 1897 году впервые наблюдал явление лизиса бактерий (сибиреязвенной палочки) под влиянием перевиваемого агента[2][3].
После открытия явлений бактериофагии Д’Эрелль развил учение о том, что бактериофаги патогенных бактерий, являясь их паразитами, играют большую роль в патогенезе инфекций, обеспечивая выздоровление больного организма, а затем создания специфического иммунитета. Это положение привлекло к явлению бактериофагии внимание многих исследователей, которые предполагали найти в фагах важное средство борьбы с наиболее опасными инфекционными болезнями человека и животных.
Также Феликс Д’Эрелль выдвинул предположение, что бактериофаги имеют корпускулярную природу. Однако только после изобретения электронного микроскопа удалось увидеть и изучить ультраструктуру фагов. Долгое время представления о морфологии и основных особенностях фагов основывались на результатах изучения фагов Т-группы — Т1, Т2,…, Т7, которые размножаются на Е. coli штамма B. Однако с каждым годом появлялись новые данные, касающиеся морфологии и структуры разнообразных фагов, что обусловило необходимость их морфологической классификации.
Вопрос 18
Классификация, форма и строение фагов.
В основу классификации положены антигенная структура, морфология фагов, спектр действия, химический состав и др. Большинство фагов относится к ДНК-содержащим вирусам с нуклео-капсидом, организованным по принципу смешанной симметрии. По спектру действия выделяют типовые фаги (Т-фаги), лизирующие бактерии отдельных типов внутри вида, моновалентные фаги, лизирующие бактерии одного вида, и поливалентные фаги, лизирующие бактерии нескольких видов. Бактериофаги устойчивы к различным физическим и химическим воздействиям. Большинство из них без вреда переносит высокие температуры (50-70 °С), действие дезинфектаитов (за исключением кислот и формалина), прямой солнечный свет и УФ-облучение в низких дозах. Бактериофаги проявляют иммуногенные свойства, вызывая синтез специфических AT.
Строение бактериофагов: Бактериофаги различаются по химической структуре, типу нуклеиновой кислоты, морфологии и характеру взаимодействия с бактериями. По размеру бактериальные вирусы в сотни и тысячи раз меньше микробных клеток.
Типичная фаговая частица (вирион) состоит из головки и хвоста. Длина хвоста обычно в 2—4 раза больше диаметра головки. В головке содержится генетический материал — одноцепочечная или двуцепочечная РНК или ДНК с ферментом транскриптазой в неактивном состоянии, окружённая белковой или липопротеиновой оболочкой — капсидом, сохраняющим геном вне клетки[10].
Нуклеиновая кислота и капсид вместе составляют нуклеокапсид. Бактериофаги могут иметь икосаэдральный капсид, собранный из множества копий одного или двух специфичных белков. Обычно углы состоят из пентамеров белка, а опора каждой стороны из гексамеров того же или сходного белка. Более того, фаги по форме могут быть сферические, лимоновидные или плеоморфные[11].
Хвост, или отросток, представляет собой белковую трубку — продолжение белковой оболочки головки, в основании хвоста имеется АТФаза, которая регенерирует энергию для инъекции генетического материала. Существуют также бактериофаги с коротким отростком, не имеющие отростка и нитевидные[12].
Головка округлой, гексагональной или палочковидной формы диаметром 45—140 нм. Отросток толщиной 10—40 и длиной 100—200 нм. Одни из бактериофагов округлы, другие нитевидны, размером 8x800 нм. Длина нити нуклеиновой кислоты во много раз превышает размер головки, в которой находится в скрученном состоянии, и достигает 60—70 мкм. Отросток имеет вид полой трубки, окружённой чехлом, содержащим сократительные белки, подобные мышечным. У ряда вирусов чехол способен сокращаться, обнажая часть стержня. На конце отростка у многих бактериофагов имеется базальная пластинка, от которой отходят тонкие длинные нити, способствующие прикреплению фага к бактерии. Общее количество белка в частице фага — 50—60 %, нуклеиновых кислот — 40—50 %.[13]
Фаги, как и все вирусы, являются абсолютными внутриклеточными паразитами. Хотя они переносят всю информацию для запуска собственной репродукции в соответствующем хозяине, у них отсутствуют механизмы для выработки энергии и рибосомы для синтеза белка. У некоторых фагов в геноме содержится несколько тысяч оснований, тогда как фаг G, самый крупный из секвенированных фагов, содержит 480 000 пар оснований — вдвое больше среднего значения для бактерий, хотя всё же недостаточного количества генов для такого важнейшего бактериального органоида, как рибосомы.
