Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основные классы органических соединений.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
48.35 Mб
Скачать

Гомополисахариды

Крахмал – главный резервный полисахарид растений, продукт фотосинтеза. В растениях он содержится в виде зерен, которые имеют различную величину, форму и строение. Высоким содержанием крахмала отличаются зерновые культуры (рис – до 82 %, кукуруза – до 72 %, пшеница – до 75 %, клубни картофеля – 12-25 %). Крахмал представляет собой белый аморфный порошок, не растворимый в холодной воде, спирте; в горячей воде образует клейстер. Крахмал состоит из двух фракций амилозы и амилопектина.

Амилоза полимер α-D-глюкопиранозы, в котором остатки глюкозы соединены α-1,4-гликозидными связями; имеет линейное строение. На долю амилозы приходится от 10-25 % крахмала. Молекулярная масса амилозы составляет ~ 400 000, в ее состав входит более 1000 моносахаридных субъединиц.

Макромолекулы амилозы способны в растворах принимать различную конформацию, чем можно объяснить многие ее свойства. В нейтральных водных растворах нормальной для амилозы конформацией является статистический клубок. Если в растворе присутствуют комплексо-образователи (например, I2), то амилоза принимает конформацию спирали, каждый виток которой содержит около шести остатков глюкозы.

Молекулы йода по своим размерам очень точно подходят к центральной полости этой спирали и образуют комплекс, обусловливающий приобретение темно-синей окраски растворами α-амилозы при йодо-крахмальном тесте. Глубина и тип окраски характерной реакции зависят от степени полимеризации и длины цепи. Эти переходы окраски отчетливо можно проследить на продуктах ступенчатого кислотного или ферментативного гидролиза крахмала при образовании декстринов различной молекулярной массы.

Амилопектин – разветвленный полимер с молекулярной массой 1-6 млн., состоит из 106 остатков D-глюкозы. Доля амилопектина в крахмале составляет 80-90 %. Остатки D-глюкозы в линейной структуре амилопектина связаны α-1,4-гликозидными связями, а боковых цепях, присоединенных к основной цепи, α-1,6-гликозидными связями:

Цепи в амилопектине расположены по-разному: в виде слоистой структуры, в виде «ёлочки» и «ветвистой» структуры. Амилопектин не способен связывать йод. Это обусловлено большим числом разветвлений, что исключает возможность образования спирали. Х

68

имические реакции для составных частей крахмала не характерны. Полисахарид не обладает восстанавливающими свойствами. При нагревании с разбавленными минеральными кислотами протекает ступенчатый гидролиз крахмала, контролируемый по изменению окраски раствора с йодом. Если раствор исходного крахмала с йодом окрашивается в синий цвет, то продукты частичного гидролиза (декстрины) – от сине-фиолетовой до бесцветной окраски через красную, коричневую, оранжевую, желтую:

Таблица 22. Зависимость степени полимеризации глюкозы и окраски йода.

Степень полимеризации глюкозы

Окраска раствора с йодом

45 и выше

35-40

20-30

30-20

20-10

10 и ниже

синяя

малиновая

красная

оранжевая

желтая

нет окраски

Образующийся красный осадок оксида меди (I) свидетельствует о появлении в гидролизате мальтозы и глюкозы.

6H10O5)n  (С6H10O5)m  C12H22O11  C6H12O6

крахмал декстрины мальтоза глюкоза

Крахмал легко усваивается в организме человека под действием фермента амилазы, являясь одним из важнейших энергетических компонентов продуктов питания (хлеб, крупа, мука, картофель и др.). Из него получают глюкозные, фруктозные сиропы, глюкозу, этиловый спирт, молочную, лимонную кислоты. В промышленности широко используют модифицированные крахмалы, которые получают обработкой или включением добавок, улучшающих их свойства. Различные виды крахмала применяются в качестве хроматографи-ческих носителей, в текстильной промышленности для изготовления красок, клеев, а также в фармацевтической и пищевой отраслях.

Гликогенструктурный и функциональный аналог растительного крахмала у животных. По строению напоминает амилопектин, но отличается большим разветвлением цепей. Как правило, между точками разветвления содержатся 10–12, а иногда и 6 глюкозных звеньев. Молекулярная масса гликогена необычайно велика, примерно 100 млн., что содействует выполнению функции резервного углевода: макромолекула гликогена из-за большого размера не проходит через мембрану клетки, оставаясь внутри, пока не возникнет потребность в энергии.

Гликоген – важнейший источник энергии для животного организма в процессе гликолиза – расщепления гликогена с образованием молочной кислоты в анаэробных условиях. Животный крахмал содержится во всех клетках организма, особенно много его в печени (10–20 %) и мышечных тканях (до 40 %). Гликоген – белый аморфный порошок, хорошо растворим в холодной воде, растворы гликогена имеют правое вращение [α]n = +196°. Онгидролизуется кислотами и ферментами, промежуточными продуктами гидролиза при этом являются декстрины и мальтоза, конечным – D-глюкоза.

амилоза амилопектин гликоген

гликозидные остатки, соединенные α-1,4-гликозидными связями

гликозидные остатки, соединенные α-1,6-гликозидными связями

невосстанавливающий конец

восстанавливающий конец

Рис. 9. Амилоза, амилопектин и гликоген

Целлюлоза – наиболее распространенный в природе полисахарид, так как он главный компонент клеточных стенок высших растений. Целлюлозой богаты хлопчатник (95 %), лен (до 80 %,) джут (60–70 %), древесина (40–50 %). Растения образуют в год до 1011 тонн целлюлозы.

Молекула целлюлозы линейная, она состоит из остатков β-D-глюкопираноз, соединенных 1→4-β-связями. Длина молекулы целлюлозы – до 10 тыс.остатков β,D-глюкопираноз. Молекулярная масса составляет от 250000 до 2000000 а.е.м.:

Высокоупорядоченная структура целлюлозы обусловлена способностью её индивидуальных цепей образовывать микрофибриллы за счет внутри- и межмолекулярных водородных связей. Это происходит потому, что пиранозные циклы в цепи повернуты на 180° по отношению друг к другу. В результате этого между атомами кислорода и гидроксигруппами при С-3 возникают водородные связи, делая молекулу линейной. Такие молекулы упаковываются в фибриллы (пакеты, жгуты) благодаря межмолекулярным водородным связям, что обусловливает большую механическую прочность волокон целлюлозы. Клетчатка не растворяется в воде, не образует коллоидных растворов и лишь очень небольшое число реактивов способно ее растворять (конц. H24, реактив Швейцера – раствор гидрата оксида меди в аммиаке).

Химические свойства целлюлозы. Целлюлоза не окрашивается йодом, вступает в реакции по гидроксильным группам (нитрование, ацилирование), при помощи кислотного гидролиза превращается в D-глюкозу.

При обработке клетчатки концентрированными растворами щелочей образуется алкоксид целлюлозы (щелочная целлюлоза):

6Н7O2(ОН)3]n + n NaOH  [C6H7О2(OH)2ONa]n + n Н2О

Данный процесс, называемый мерсеризацией, применяется для придания хлопчатобумажным тканям лучшей окрашиваемости и более красивого внешнего вида. Щелочная целлюлоза, кроме того, используется в производстве вискозного волокна и эфиров целлюлозы.

Общим способом получения простых эфиров является взаимодействие щелочной целлюлозы с галогеналкилами или алкилсульфатами:

[C6H7O2(OH)2ONa]n + 3n C6H5CH2Cl + 2n NaOH 

 [С2Н7О2(OСН2C6Н5)з]п + 3n NaCI + 3n Н2

[C6H7O2(OH)2ONa]n + 3n (CH3О)2SO4 + 2n NaOH 

 [C6H7O2(OCH3)3]n + 3n CH3NaSО4 + 2n H2О

Среди простых эфиров целлюлозы большое значение имеют метил-, этил- и бензилцеллюлоза. Метилцеллюлоза применяется в текстильной, косметической и пищевой промышленности. Этилцеллюлоза используется в производстве пластмасс, пленок, лаков.

73

Взаимодействие целлюлозы с нитрующей смесью (HNO3 и H2SO4) приводит к образованию нитратов целлюлозы. Нитраты целлюлозы с малым содержанием азота используют для изготовления нитроцеллюлозных лаков, с большим содержанием – для получения коллодия (вязкий раствор со смесью этанола и диэтилового эфира), который после испарения образует плёнку коллоксилина (10–12 % азота). Нитроцеллюлозу с максимальным содержанием азота называют пироксилином (12–13,5 % азота), который применяется для изготовления бездымного пороха и других целей.

При взаимодействии целлюлозы с уксусным ангидридом образуется ацетилцеллюлоза. Она растворяется в органических растворителях, ее используют для получения ацетатного шелка и негорючих кино- и фотопленок.

Целлюлоза хорошо растворяется в щелочи в присутствии сероуглерода с образованием ксантогенатов. При подкислении из полученного раствора (вискоза) вновь выделяется целлюлоза. Если вискозу продавливать через тонкие отверстия (фильеры) в водный раствор серной кислоты, получают тонкие нити, из которых получают искусственное волокновискозный шёлк. Продавливание вискозы через тонкие щели приводит к получению прозрачной плёнки целлофана.

Схема 23. Химические реакции целлюлозы.

Гидролиз целлюлозы серной кислотой под давлением обеспечивает получение глюкозы:

6H10O5)n  (С6H10O5)m  C12H22O11  C6H12O6

целлюлоза целлодекстрины целлобиоза глюкоза

Глюкоза может быть сброжена с образованием этилового спирта:

С6Н12О6  2 С2Н5ОН + 2 СО2

Спирт, полученный таким образом, называется гидролизным. Он содержит примеси метанола, и поэтому применяется только для технических целей.

Целлюлоза не усваивается организмом человека, т.к. у него отсутствует фермент, расщепляющий гликозидные связи между остатками β-глюкозы. Многие животные, особенно жвачные, успешно ее усваивают. В организме человека целлюлоза входит в состав пищевых волокон, выполняющих роль детоксикантов тяжелых металлов, радионуклидов, канцерогенных и токсичных продуктов обмена различных видов соединений.

Основные химические превращения целлюлозы изображены на схеме 23 (см. с. 281):

Хитин гомополисахарид, построенный из остатков N-ацетил-2-глюко-замина, соединенных между собой β-1,4-гликозидными связями. Хитин входит в состав клеточных стенок грибов, а также служит основным структурным полисахаридом покровов тела насекомых и панциря ракообразных.

Фруктаны – полисахариды, построенные из остатков D-фруктозы; найдены в некоторых растениях, зеленых водорослях и бактериях.

инулин; при n = 1 изокестоза (1-кестоза)

флеин (при n = 1 6-кестоза)

Фруктаны являются продуктами фруктозилирования сахарозы, поэтому каждая их молекула содержит один остаток D-глюкозы и лишена восстановительных свойств. В образовании гликозидных связей фруктанов участвуют только первичные гидроксильные группы, все остатки фруктозы имеют фуранозную форму и β-конфигурацию гликозидного гидроксила. Поскольку молекула сахарозы содержит три первичных гидроксила, возможны три различных трисахарида (1-кестоза, 6-кестоза и неокестоза, у которой фруктофураноза присоединена по первичному гидроксилу глюкозы).

Последовательное присоединение остатков β,D-фруктофуранозы к 1-кестозе связями β-(2→1) образует инулин, а к фруктозному остатку 6-кестозы связями β-(2→6) – флеин. Макромолекулы инулина преимущественно линейны, молекулярная масса их не превышает 6000 и представляет собой цепь из 35 – 40 фруктозных остатков.

В клетках растений фруктаны выполняют роль резервного запасного материала, осморегулятора и антифриза. Инулин содержится в клубнях топинамбура, цикория, одуванчика и георгинов, откуда может быть получен экстракцией горячей водой. Инулин используется как заменитель крахмала в питании диабетиков, а сырье, богатое инулином, – для производства D-фруктозы.

Другим типом фруктанов является леван, у которого остатки фруктозы соединены β-2,6-гликозидными связями. Леван, как и инулин, также содержит α-D-глюкопиранозный остаток:

Фруктаны не являюся восстанавливающими сахаридами, поскольку аномерные углеродные атомы концевых моносахаридных остатков участвуют в образовании гликозидной связи.