Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основные классы органических соединений.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
48.35 Mб
Скачать

Химические свойства Реакции оксогруппы

Окисление. В зависимости от типа окислителя и условий реакции моносахариды могут окисляться с образованием различных продуктов:

А. В реакциях с мягкими окислителями (аммиакат серебра, реактив Фелинга, бромная вода) альдозы окисляются с участием альдегидной группы с образованием альдоновых кислот.

Окисление аммиакатом серебра (реакция серебряного зеркала). Глюкоза окисляется до глюконовой кислоты в виде аммониевой соли с выделением металлического серебра в виде зеркала:

аммониевая соль

D-глюкоза D-глюконовой кислоты

Окисление реагентом Фелинга, содержащего в виде комплексного соединения двухвалентную медь в щелочной среде. При окислении альдегид-ной группы сахарида реагент восстанавливается при нагревании до красного осадка оксида меди (I); глюкоза окисляется в глюконовую кислоту:

D-глюкоза D-глюконовая кислота

Благодаря способности восстанавливать ионы Сu2+ или Аg+, моносахариды или их производные, содержащие альдегидную группу, называют восстанавливающими. Обе реакции применяются для качественного и количественного определения моносахаридов в биологических средах.

Окисление бромной водой. Реакция сопровождается обесцвечиванием бромной воды, так как молекулярный бром восстанавливается в бесцветный бромид-анион.

D-глюкоза D-глюконовая кислота

Кетозы бромной водой не окисляются, поэтому реакция применяется для отличия кетоз от альдоз. Так как реакции с аммиакатом серебра и жидкостью Бенедикта–Фелинга проводятся в щелочной среде, в которой устанавливается равновесие между эпимерами (см. ниже), то они положительные и для кетоз.

Б. В присутствии сильных окислителей, например, концентрированной азотной кислоты, помимо альдегидной группы, окисляется первичная спиртовая группа с образованием дикарбоновых полигидроксикислот, называемых альдаровыми кислотами (гликаровые, сахарные кислоты). Так, при окислении D-глюкозы концентрированной HNO3 получают глюкаровую кислоту, при окислении галактозы – галактаровую (слизевую) кислоту.

D-галактоза галактаровая (слизевая) кислота

В. Окисление йодной кислотой. При обработке соединений, содержащих две и более групп –OH или = О, находящихся у соседних атомов углерода, иодной кислотой (реакция Малапрада) протекает реакция окисления с расщеплением С–С связи по следующим схемам:

Каждая концевая группа СН2ОН, отщепляясь, образует молекулу формаль-дегида, а каждая отщепляющаяся группа –СНОН – молекулу муравьиной кислоты:

HOCH2 – (CHOH)n – CH2OH

↓ ↓ ↓

HCHO n HCOOH HCHO

На основании данных о продуктах реакции, их соотношении и по количеству израсходованной HIO4 делают выводы о структуре окисленного вещества. Для моносахаридов различного строения окислительное расщепление под действием йодной кислоты протекает по следующим схемам:

кетогексоза

альдогексоза

альдопентоза

Г. Для окисления только первичной спиртовой группы в молекуле моносахарида, альдегидную группу первоначально защищают путем образования метилгликозида, который на последующей стадии подвергают гидролизу и получают уроновые (альдуроновые) кислоты:

метилгликозид

Уроновые кислоты способны превращаться в лактоны и декарбоксили-роваться до пентоз, а также окисляться и восстанавливаться:

D-глюкуроновая кислота γ-лактон D-глюкуроновой кислоты

D-галактуроновая кислота L-арабиноза

D-глюкаровая D-глюкуроновая L-гулоновая кислота

кислота кислота

Восстановление моносахаридов амальгамой натрия или комплексными гидридами металлов (боргидрид натрия NaBH4, алюмогидрид лития LiAlH4) приводит к получению соответствующих многоатомных спиртов:

D-глюкоза D-сорбит

При восстановлении кетоз, например D-фруктозы, возникает новый асимметрический углеродный атом, что приводит к образованию двух многоатомных спиртов:

D-фруктоза D-сорбит D-маннит

Удлинение углеродной цепи моноз на один атом углерода осуществляют с помощью последовательных реакций по Фишеру-Килиани:

D-эритроза два диастереоизомера, т.к. две диастереоизомерные

возникает новый асиммет- альдоновые кислоты

рический центр при С2

-лактоны D-арабиноза D-рибоза

(две диастереоизомерные пентозы)

Укорочение углеродной цепи моноз на один углеродный атом.

А. Метод Руффа включает окисление альдозы бромной водой до альдоновой кислоты с последующим ее окислительным декарбоксилированием при действии пероксида водорода и сульфата железа (III):

D-галактоза D-ликсоза

(альдогексоза) (альдопентоза)

Б. Метод Воля-Хоккета предусматривает получение оксима альдозы, его дегидратацию и обработку полученного нитрила AgOH:

D-галактоза D-ликсоза

В. В методе Вермана альдозу окисляют бромной водой с последующим действием аммиака до амида альдоновой кислоты; амид подвергают перегруппировке Гофмана с последующим гидролизом в щелочной среде:

D-галактоза

D-ликсоза

Эпимеризация. В слабощелочной среде наблюдаются взаимные превращения моносахаридов, различающихся конфигурацией при первых двух атомах углерода. Причина заключается в образовании ендиола, который для глюкозы, маннозы и фруктозы является общим. Так, из D-глюкозы, D-маннозы или D-фруктозы получается равновесная смесь указанных сахаров:

Образование фенилозазона. L-Манноза и эпимерные ей L-глюкоза и L-фруктоза образуют озазон одинакового строения:

При образовании озазонов в результате реакции с фенилгидразином исчезают отличия в строении и конфигурации моноз у первых двух С-атомов, т.е. эпимеры образуют одинаковые озазоны.

Реакции гидроксильных групп

Реакции моноз со щелочным раствором гидроксида меди. В результате реакции происходит растворение светло-голубого осадка гидроксида меди с образованием синего раствора комплексного соединения:

Алкилирование

А. Гликозидный гидроксил легко алкилируется спиртами в присутствии хлороводорода, спиртовые гидроксилы при этом не алкилируются.

Алкилированные по полуацетальному гидроксилу производные моноз называются гликозидами. Гликозиды являются ацеталями или кеталями. Несахарный компонент гликозида называют агликоном. Агликон чаще всего связан с остатком сахара с помощью атома кислорода:

α – гликозид

В N-гликозидах остаток углевода связан с агликоном через атом азота. Связь между агликоном и моносахаридом называется гликозидной связью. В природе часто встречаются моносахариды в виде гликозидов, например кониферин, содержащийся в хвое и в спарже, ваниль из стручков ванили, индикан из индиго и салицин ивы:

кониферин ваниль

индикан салицин

В качестве агликонов могут быть остатки спиртов, фенолов и т.д., в роли агликонов – сами моносахариды. О-гликозиды не способны к таутомерии, и поэтому, в отличие от полуацеталей, их растворы не мутаротируют. О-гликозиды гидролизуются в кислой среде или в присутствии ферментов.

Б. Исчерпывающее алкилирование моноз проводят действием алкилгалоге-нидов или полных эфиров серной кислоты. При действии раствора кислоты на продукты реакций гидролизу подвергается только полуацетальный фрагмент, а простые эфирные связи, образованные спиртовыми гидроксилами, сохраняются

α,D-глюкопираноза 1,2,3,4,6-пента-О-метил- 2,3,4,6-тетра-О-метил-

α,D-глюкопираноза α,D-глюкопираноза

Ацилирование. При действии на монозы ангидридов или хлорангидридов карбоновых кислот происходит образование пентаацильных производных. Полученные продукты содержат сложноэфирные группы, которые при гидролизе в кислой среде вновь превращаются в гидроксильные группы:

Дегидратация. Пентозы при нагревании с разбавленной соляной кислотой образуют фурфурол – альдегид, образующий с анилином продукт конденсации, окрашенный в красный цвет.

пентоза фурфурол

Гексозы в этих условиях циклизуются с образованием α-гидро­ксиметил-фурфурола, который разлагается до левулиновой и муравьиной кислот.

гексоза 5-гидроксиметилфурфурол левулиновая кислота

Реакцией дегидратации пользуются, чтобы отличить пентозы от гексоз.

Реакции брожения. Брожение – комплекс ферментативных реакций расщепления углеводов, протекающих в организме животных, растений, микроорганизмов без участия или с участием кислорода (соответственно анаэробное или аэробное брожение). Спиртовое брожение углеводов протекает с помощью дрожжей рода Saccharomyces и бактерий рода Zimomonas. Процесс сопровождается образованием фосфорных эфиров моносахаридов, которые обеспечивают расщепление глюкозы на фосфодиоксиацетон и фосфо-глицериновый альдегид. Последние окисляются в пировиноградную кислоту, которая под влиянием фермента декарбоксилазы превращается в СО2 и уксусный альдегид. Ацетальдегид восстанавливается до этилового спирта.

Спиртовому брожению подвергаются D-глюкоза, D-манноза, D-фруктоза и D-галактоза. На другие гексозы, в том числе и на L-изомеры, и пентозы ферменты дрожжей не действуют.

Другие виды ферментативного брожения моносахаридов имеют свои специфические особенности и протекают по следующим схемам:

  • молочнокислое брожение (вызывается бактериями родов Lactobacillus и Streptococcus): С6H12O6  2 CH3CH(OH)COOH (молочная кислота);

  • маслянокислое брожение под действием спорообразующих бактерий рода Сlostriddium: С6H12O6  CH3CH2CH2COOH +2H2 + 2CO2;

  • лимоннокислое брожение: С6H12O6 + O2  HO–C(COOH)(CH2COOH)2 + 2H2O (с участием цитратсинтетазы);

  • ацетонбутиловое брожение: 2 С6H12O6  С4H9OH +CH3COCH3 + 4H2 + 5CO2.

Общим для всех видов брожения является протекание ферментативных процессов с участием биокатализаторов: оксидоредуктаз (окислительные ферменты), дегидрогеназ (восстановительные ферменты), декарбоксилаз (фер-менты декарбоксилирования). Природа ферментов с различной пространствен-ной структурой белка и реакционными центрами, их пространственным экранированием, что и определяет специфичность протекания реакций разложения одних и тех же гексоз до тех или иных конечных продуктов.

Аминосахара – производные сахаров, содержащие аминогруппу вместо одного из спиртовых гидроксилов, например D-глюкозамин.

Дезоксисахариды – производные сахаров, в которых одна или несколько гидроксильных групп замещены водородом. 2-Дезокси-D-рибоза – углеводный компонент ДНК. L-рамноза (6-дезокси-L-манноза) и L-фукоза (6-дезокси-L-галактоза) – структурные фрагменты гликозидов и полисахаридов растений, водорослей, грибов. L-фукоза содержится в углеводных веществах крови, гликопротеинов и гликолипидов животных.

D-глюкозамин 2-дезокси-D-рибоза L-рамноза L-фукоза

(6-дезокси-L-манноза) (6-дезокси-L-галактоза)

ОЛИГОСАХАРИДЫ

Классификация В зависимости от числа монозных остатков различают: дисахариды (биозы), трисахариды (триозы). Дисахаридами являются мальтоза, целлобиоза, сахароза, лактоза; трисахаридами – раффиноза, целлотриоза, состоящая из 3-х остатков D-глюкозы и т.д. Остатки моноз в олигосахаридах могут быть связаны α- или β-гликозидными связями и подразделяются в зависимости от положения оксигруппы, участвующей в образовании гликозидной связи, на 1→4, 1→6 и 1→3-связи. При наличии в молекуле олигосахарида свободного полуацетального гидроксила его относят к группе восстанавливающих, так как он вступает во все реакции моноз (лактоза, мальтоза, целлобиоза). Если в образовании гликозидных связей участвуют полуацетальные гидроксилы всех моноз, входящих в состав олигосахарида, то он не содержит свободной гликозидной группы, и такой олигосахарид является невосстанавливающим. Олигосахариды без гликозидного гидроксила не дают реакции, характерные для оксоформ моносахаридов (сахароза, трегалоза, раффиноза). В зависимости от состава моносахаридов олигосахариды подразделяют на гомоолигосахариды (состоят из одних и тех же моноз) и гетероолигосахариды (состоят из остатков разных моноз). Олигосахариды широко распространены в природе, встречаются как в свободном виде, так и образуются в результате ферментативного гидролиза высших полисахаридов.