- •1. Предельные углеводороды. Алканы и циклоалканы
- •Химические свойства
- •Особенности химии циклопропана
- •Контрольные вопросы к главе 1 «Предельные углеводороды»
- •2. Алкены (олефины)
- •Способы получения.
- •Химические свойства.
- •Галогенирование.
- •Электрофильное присоединение (ае) несимметричных полярных
- •Полимеризация и сополимеризация.
- •7. Теломеризация.
- •II. Окисление алкенов.
- •А. Окисление алкенов без разрыва по двойной связи
- •III. Реакции замещения атома водорода у α-углеродного атома
- •Контрольные вопросы к главе 2 «Алкены
- •3. Диеновые углеводороды
- •2. Дегидрирование углеводородов, получаемых при крекинге нефти.
- •3. Дегидрогалогенирование дигалогенпроизводных.
- •Контрольные вопросы к главе 3 «Диеновые углеводороды»
- •4. Алкины
- •2. Дегидрогалогенирование дигалогенпроизводных вицинального и
- •7 Получение сложных виниловых эфиров.
- •Линейная димеризация и тримеризация ацетилена.
- •Циклотримеризация.
- •Кислотные свойства. Получение ацетиленидов (алкинидов).
- •Реакции с карбонильными соединениями.
- •Окисление.
- •Контрольные вопросы к главе 4 «Алкины»
- •5. Арены (ароматические углеводороды)
- •Изомерия (структурная):
- •I. Реакции электрофильного замещения в бензольном ядре
- •Механизм реакции se в общем виде выглядит следующим образом:
- •1.Гидрирование
- •Радикальное хлорирование
- •Многоядерные ароматические соединения
- •Контрольные вопросы к главе 5 «Ароматические углневодороды»
- •6. Галогенопроизводные углеводородов.
- •Классификация галогенопроизводных:
- •Способы получения. Свободные галогенопроизводные в природе не встречаются. Они могут быть синтезированы из углеводородов уже рассмотренными способами или из других классов органических соединений.
- •Присоединение галогенов:
- •I. Реакции замещения
- •II. Реакции элиминирования (отщепления)
- •III. Влияние атомов галогена на углеводородную часть молекулы
- •Реакции галогенопроизводных углеводородов с металлами
- •Контрольные вопросы к главе 6 «Галогенопроизводные углеводородов»
- •Магнийорганический синтез
- •Контрольные вопросы к главе 7 «Магнийорганический синтез»
- •8. Спирты и фенолы
- •8) Промышленное получение метанола и этанола
- •9) Синтезы фенолов
- •Химические свойства.
- •Контрольные вопросы к главе 8 «Спирты и фенолы»
- •9. Простые эфиры
- •Контрольные вопросы к главе 9 «Простые эфиры»
- •Контрольные вопросы к главе 10 «α-Окиси алкенов»
- •11. Альдегиды и кетоны
- •Способы получения.
- •4. Гидролиз геминальных дигалогенпроизводных.
- •5. Окисление спиртов.
- •8. Оксосинтез (гидроформилирование).
- •1. Нуклеофильное присоединение (an)) по карбонильному
- •Нуклеофильное присоединение (an)) по α-углеродному атому.
- •Кроме указанных веществ галоформную реакцию могут также давать этанол и вторичные метилкарбинолы, окисляющиеся в условиях реакции до метилсодержащих карбонильных соединений.
- •Контрольные вопросы к главе 11 «Альдегиды и кетоны»
- •12. Карбоновые кислоты
- •В реакцию вступают уксусный альдегид, этанол и вторичные метилкарбинолы с образованием карбонильных соединений, содержащих метильный радикал.
- •Функциональные производные карбоновых кислот
- •Механизм реакции аналогичен механизму реакции этерификации:
- •Галогенангидриды карбоновых кислот
- •Амиды карбоновых кислот
- •Нитрилы
- •Ангидриды карбоновых кислот
- •Высшие карбоновые кислоты
- •Контрольные вопросы к главе 12 «Карбоновые кислоты»
- •13. Гидроксикислоты
- •Контрольные вопросы к главе 13 «Гидроксикислоты»
- •14. Оксокислоты
- •Контрольные вопросы к главе 14 «Оксокислоты»
- •I5. Органические соединения азота
- •2). Реакции, связанные с подвижностью α-атомов водорода.
- •3. Перегруппировка амидов карбоновых кислот по Гофману:
- •Химические свойства
- •2. Алкилирование аминов.
- •Реакции аминов с азотистой кислотой.
- •В случае взаимодействия n,n-диметиламинобензола с азотистой кислотой механизм реакции выглядит следующим образом:
- •Реакции аминов с карбонильными соединениями.
- •Контрольные вопросы к главе 15 «Органические соединения азота»
- •16. Органические соединения серы тиоспирты
- •Сульфиды (тиоэфиры)
- •Эфиры серной кислоты
- •Контрольные волросы к главе 16 «Органические соединения серы»
- •17. Углеводы
- •Моносахариды
- •Химические свойства Реакции оксогруппы
- •Восстанавливающие олигосахариды
- •Химические свойства
- •Гомополисахариды
- •Гетерополисахариды
- •Контрольные вопросы к главе 17 «Углеводы».
- •18. Аминокислоты
- •1. Аминирование -галогенкарбоновых кислот (по Габриэлю):
- •Из карбонильных соединений (синтез Штреккера):
- •Восстановительное аминирование -оксокислот:
- •Синтезы -аминокислот на основе малонового, ацетоуксусного, циануксусного и нитроуксусного эфиров
- •Контрольные вопросы к главе 18 «Аминокислоты и белки»
- •Ответы на контрольные задания
Высшие карбоновые кислоты
Таблица 16. Высшие карбоновые кислоты
Структурная формула ВЖК |
Название |
Предельные ВЖК : |
|
СН3–(СН2)10–СООН |
Лауриновая кислота, додекановая кислота |
СН3–(СН2)12–СООН |
Миристиновая кислота, тетрадекановая кислота |
СН3–(СН2)14–СООН |
Пальмитиновая, кислота гексадекановая кислота |
СН3–(СН2)16–СООН |
Стеариновая кислота, октадекановая кислота |
Непредельные ВЖК : |
|
CH3(CH2)7CH=CH(CH2)7COOH или
|
Олеиновая кислота, цис-9-октадеценовая кислота |
СH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH или
|
Линолевая кислота, 9-цис-,12-цис-октадекадиеновая кислота |
СH3CH2CH=CHCH2CH=CHCH2CH=CH(CH2)7COOH
или
|
Линоленовая кислота, 9-цис-,12-цис-,15-цис- октадекатриеновая кислота |
СH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3CO2H
или
|
Арахидоновая кислота, 5-цис-,8-цис-,12-цис-15-цис-эйкозатетраеновая кислота |
Содержатся в жирах. Они по своему строению одноосновны, имеют неразветвленную цепь углеродных атомов и содержат в молекулах четное число атомов углерода (С12 – С18). Ненасыщенные карбоновые кислоты, входящие в состав жиров, имеют цис-конфигурацию молекулы по отношению к двойным связям (см. табл. 13). Химические свойства высших карбоновых кислот напоминают свойства низших карбоновых кислот. С участием карбоксильной группы они вступают в реакции образования солей (мыла) галогенангидридов, ангидридов, амидов, сложных эфиров, нитрилов. Непредельные жирные кислоты также вступают в реакции по двойным связям (гидрирование, галогенирование, окисление).
Высшие кислоты находятся в природе, прежде всего, в составе жиров – полных сложных эфиров глицерина – причем жиры являются глицеридами не только одинаковых (простые ацилглицерины), но в основном разных кислот (смешанные ацилглицерины). Соотношение остатков карбоновых кислот меняется при переходе от одного жира к другому: каждый жир имеет свой характерный состав, мало изменяющийся от образца к образцу. Животные жиры, содержащие, главным образом, ацилглицерины предельных кислот, – твердые вещества. Растительные жиры, обычно называемые маслами, содержат глицериды непредельных кислот. Они являются преимущественно жидкостями, например подсолнечное, оливковое, конопляное и льняное масло.
В химическом отношении жиры – типичные сложные эфиры. Им характерны реакции гидролиза и присоединения по двойным связям ненасыщенных радикалов:
Жиры имеют большое значение в жизнедеятельности человека. Они выполняют функцию энергетического запаса, отлагаясь в тканях организма. По теплотворной способности жиры занимают первое место среди питательных веществ: 1 г жира при сгорании дает 9300 кал. Непредельные кислоты с системой связи –CH=CHCH2CH=CН– организм человека не синтезирует, но они должны входить в состав рациона для полноценного питания. Данные кислоты образуют липиды клеточных стенок и играют большую роль в придании им полупроницаемости при задерживании одних веществ и пропускании других.
Жиры служат исходным материалом в производстве глицерина и мыла. Высшие карбоновые кислоты, содержащие 24–32 атома углерода и спирты с числом атомов углерода от 16 до 30, входят в состав восков.
Фосфатиды (фосфолипиды) – диацилглицерины жирных кислот, в которых глицерин частично этерифицирован фосфорной кислотой, а кислота вторым своим гидроксилом этерифицирует аминоспирты –
холин HO–CH2CH2–N+(CH3)3 или этаноламин HO–CH2CH2–NH2.
Фосфатиды входят в состав клеток и тканей животных (мозговая и нервная ткань, куриный желток) и раститетельных организмов, в куриный желток и играют важную роль в биологических процессах: при передаче нервного возбуждения, для регулирования проницаемости оболочек клеток и т.д.
