Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы ГОС РНМ.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.76 Mб
Скачать

4. Закачка в пласт двуокиси углерода со2

Одним из эффективных методов из газовых методов увеличения нефтеотдачи является закачка в пласт СО2.

Вязкость жидкого СО2 составляет 0,05-0,1 мПа.с, газообразного при давлениях 8-25 МПа и температуре 20-100 оС изменяется от 0,02 до 0,08 мПа.с. Плотность газообразного углекислого газа при тех же условиях изменяется в пределах от 0,08 до 0,1 кг/м3. Плотность есть обратная величина удельного объема.

Он растворяется в воде значительно лучше углеводородных газов. Растворимость двуокиси углерода в воде увеличивается с повышением давления и уменьшается с повышением температуры. В пластовых условиях в одном м3 воды растворяется от 30 до 60 м3 СО2, образуя угольную кислоту Н2СО3, последняя растворяет отдельные виды цемента и породы и повышает проницаемость песчаников на 5-15 %, а доломитов - на 6-75 %.

Двуокись углерода растворяется в нефти в 4 –10 раз лучше, чем в воде. В одном м3 нефти при давлении 10 МПа и температуре 27 о С растворяется 250-300 м3 СО2 .

Давление полной смесимости СО2 для разных нефтей различно, для маловязких нефтей оно меньше., чем для высоковязких тяжелых нефтей. Повышение температуры от 50 до 100оС увеличивает давление смесимости на 5-6 МПа.

Ввиду влияния указанных факторов на давление смесимости, СО2 в пластовых условиях лишь частично смешивается со многими нефтями. В пласте СО2, контактируя с нефтью, частично растворяется в ней и одновременно экстрагирует легкие углеводороды и обогащается ими. Это приводит повышению смесимости СО2 и вытеснение становится смешивающимся. В результате давление, необходимое для смешивающегося вытеснения нефти углекислым газом значительно меньше, чем чистым углеводородным газом.

В настоящее время известны следующие технологии применения СО2:

1.Вытеснение нефти карбонизированной водой.

В этом случае для вытеснения нефти применяют воду, полностью или частично насыщенную углекислым газом. Данный процесс основан на том факте, что при нагнетании карбонизированной воды углекислый газ, в силу лучшей растворимости его в нефти, из водной фазы переходит в нефть, благоприятно изменяя ее свойства, в результате чего повышается коэффициент нефтеотдачи пласта.

2. Непрерывное нагнетание углекислого газа.

3.Вытеснение нефти оторочкой углекислого газа.

По этой технологии в пласте создается оторочка углекислого газа, которая в дальнейшем вытесняется обычной или карбонизированной водой.

4.Чередующаяся закачка углекислого газа и воды.

Малая вязкость и низкая плотность газа – важнейшие факторы, ограничивающие применение классических газовых методов, предполагающих непрерывную закачку. Одним из решений этой проблемы было снижение относительной фазовой проницаемости по газу за счет увеличения насыщенности подвижной водой. Это осуществляется посредством поочередной закачки газа и воды (создания оторочек) либо формированием устойчивой водогазовой смеси с применением ПАВ.

Эффективность применения водогазового воздействия может объясняться следующим механизмом:

1. Нефть вытесняется газом (смешивающееся/несмешивающееся вытеснение), при этом газ в результате гравитационной сегрегации движется по верхним участкам пласта.

2. Нефть вытесняется водой, которая занимает нижнюю часть пласта.

3. Вблизи нагнетательной скважины происходит совместное движение воды и газа.

Особенно эффективно вытеснение газом применять для разработки слабопроницаемых нефтяных пластов.

В процессе смешивающегося вытеснения нефти обогащенным газом происходят сложные физико-химические явления между пластовой нефтью и закачиваемым газом.

Если происходит полное смешение газа и нефти, то вязкость и плотность смеси уменьшается.

Если вытеснение нефти происходит в условиях неполной смесимости, то часть закачиваемого газа находится в свободном состоянии. Свободный газ экстрагирует более легкие углеводороды из нефти, т.е. более легкие углеводороды выделяются из нефти и смешиваются с газом. Газ, обогащенный легкими углеводородами нефти, прорывается к скважинам, а основная часть нефти, лишенная своих легких фракций, становится более вязкой. Это приводит к снижению эффективности вытеснения газом.

При закачке газа, плотность которого значительно меньше плотности воды, гидростатическое давление газового столба мало (примерно в 7 - 15 раз меньше, чем водяного). Поэтому необходимое забойное давление приходится создавать за счет увеличения давления на устье (давление нагнетания), вследствие чего возрастают затраты энергии на закачку газа в пласт.

2. При закачке газа, вследствие его большой сжимаемости, необходимый объем газа нужно предварительно сжать до забойного давления, на что расходуется большое количество энергии. Тогда как при закачке воды, вследствие ее «жесткости», энергия на сжатие практически равна нулю.

Кроме того, некоторое количество нагнетаемого углеводородного газа растворяется в пластовой нефти, отчего общее количество закачиваемого газа увеличивается.

Поэтому ППД закачкой газа не нашло широкого распространения и применяется главным образом на истощенных нефтяных месторождениях, пластовое давление которых мало, или на неглубоких месторождениях.

Количество газа, необходимое для нагнетания в пласт только для поддержания пластового давления на существующем уровне, очевидно, равняется сумме объемов добытой нефти, воды и газа, приведенных к пластовым условиям (Р, Т).

57. Объясните суть механизма и технологических методов воздействия на пласт путем закачки в него двуокиси углерода. При каких давлениях и составах нефти и втесняющего ее газа возможно образование в пласте области полного смешивания нефти и газа?

К веществу, хорошо смешивающемся с нефтью, относится двуокись углерода СО2, которую используют в качестве агента, закачиваемого в пласт для вытеснения нефти. Источники СО2 — природные месторождения, содержащие часто смесь углекислого газа с углеводородами и в ряде случаев с сероводородом, отходы химических производств, дымовые газы крупных энергетических и металлургических установок.

Двуокись углерода в стандартных условиях, т. е. при давлении 105 Па и температуре 273,2К — газ.

Механизм вытеснения

Углекислый газ или двуокись углерода образует жидкую фазу при температуре ниже 310С. При температуре выше 310С двуокись углерода находится в газообразном состоянии, при давлении меньшем 7.2 МПа из жидкого переходит в парообразное.

Образующаяся при растворении СО2 в воде угольная кислота H2CO3 растворяет цемент в породе пласта и при этом повышает проницаемость. Двуокись углерода в воде способствует разрыву и «отмыву» пленочной нефти, покрывающей зерна породы и уменьшает возможность разрыва водной пленки.

При пластовом давлении выше давления полной смесимости пластовой нефти с СО2 (двуокись углерода) будет вытеснять нефть как обычный растворитель (смешивающееся вытеснение).

В пласте образуются три зоны.

1. Зона первоначальной пластовой нефти

2. Переходная зона

3. Зона чистого СО2

Если СО2 нагнетается в заводненную залежь, то перед зоной СО2 формируется вал нефти, вытесняющий пластовую воду.

Диоксид углерода обладает нефтевытесняющими свойствами, благодаря его способности.

1. Хорошо растворяется в нефти и в пластовой воде, и наоборот, может растворять в себе нефть и воду.

2. Уменьшает вязкость нефти, и повышает вязкость воды при растворении в них, снижая подвижность воды относительно нефти.

3. Увеличивать объем нефти при растворении в ней СО2 и повышать эффективность вытеснения и «доотмыва» нефти.

4. Снижать межфазное натяжение на границе нефть-вода, улучшать смачиваемость породы водой при растворении в нефти и воде и обеспечивать переход нефти из пленочного состояния в капельное.

5. Увеличивать проницаемость отдельных типов коллекторов в результате химического взаимодействия угольной кислоты и скелета породы.

При вытеснении нефти СО2 в зависимости от конкретных условий могут применяться различные схемы.

58. Вытеснение нефти из пластов растворами ПАВ. Какая проблема решается закачкой ПАВ. Рассказать технологию закачки. Какую работу выполняет раствор ПАВ в пласте.

При закачке в пласт ПАВ адсорбируются на поверхности поровых пространств, на границах раздела нефть – вода и понижают межфазные поверхностные натяжения (МФН).

С позиции физико-химической термодинамики процесс протекает следующим образом. При снижении МФН до очень низкого уровня (тысячных долей миллиньютонов на метр) глобулы остаточной нефти, удерживающиеся в пористой среде капиллярными и адгезионными силами, становятся подвижными. Это приводит к вытеснению нефти и падению прочности адсорбционных пленок, образующихся на границе нефть – порода – раствор, улучшению соотношения подвижности раствора ПАВ и нефти в зоне нефтенасыщенности.

ПАВ обладают свойствами самопроизвольно концентрироваться на поверхностных слоях, причем в количестве в десятки тысяч раз большем, чем в объеме раствора. Благодаря этому процессами в поверхностных слоях можно управлять уже при малых концентрациях ПАВ в растворе.

Закачка растворов ПАВ в нагнетательные скважины способствует увеличению смачиваемости пород водой, разрыву пленки нефти и уменьшению поверхностного натяжения на границе с нефтью. Проникая в мелкие поры и каналы, ПАВ увеличивают охват заводнением. Остаточная нефть в виде пленки и капель хорошо отмывается за счет образования адсорбционных пленок на границе нефть – раствор, образуя агрегативную устойчивую эмульсию «нефть в воде» и вытесняется из пористой среды потоком воды. Приемистость нагнетательной скважины увеличивается за счет повышения фазовой проницаемости породы для воды.

Определенная группа ПАВ, помимо снижения поверхностного натяжения, способствует гидрофобизации поверхности поровых каналов в породе, т.е. ухудшает их способность смачиваться водой.

Пленочная вода, отрываясь от твердой поверхности, превращается в мелкие капельки, уносимые фильтрационными потоками нефти из призабойной зоны в скважину. Гидрофобизация стенок поровых каналов способствует увеличению проницаемости породы для нефти и уменьшению для воды, что способствует повышению нефтеотдачи.

ПАВ представляют собой органические вещества, получаемые из углеводородов, входящих в состав нефти, а также спирта, фенола, жирных кислот и их щелочных солей (мыла и синтетических жирозаменителей). По составу и химическим свойствам все ПАВ делятся на два класса: ионогенные и неионогенные. Для первых характерно, что их молекулы диссоциируют в водной среде на ионы (мыла, сульфокислоты, азолят, эфиры серной кислоты), в состав вторых входят электрические нейтральные молекулы, не распадающиеся на ионы (спирты, карбоновые кислоты, дибудил, неонол АФ 9-12, неонол АФ 9-10 и др.) и служащие носителями поверхностной активности.

Для увеличения нефтеотдачи добывающих и приемистости нагнетательных скважин наиболее эффективными являются экологически безопасные неионогенные ПАВ типа АФ 9-12 и АФ 9-10, биоразлагаемость которых при низкой концентрации (20-30 мг/л) составляет не менее 90 %. Даже при длительном контакте с растворами ПАВ кожно-раздражающего действия не наблюдается. Предельно допустимая концентрация (ПДК) для водоемов рыбного хозяйства 0,25 мг/л, для воды хозяйственно-бытового пользования 0,17 мг/л. Эти ПАВ хорошо десорбируются с поверхности породы при последующей закачке воды в пласт. Фронт ПАВ движется по пласту в 10-20 раз медленнее, чем фронт вытеснения. Вследствие большой адсорбции объем закачиваемых растворов ПАВ должен быть не менее двух-трех объемов пор.

Технология закачки весьма проста и не требует внесения изменений в систему размещения скважин.

В гидрофильных коллекторах водоудерживающая способность в ПЗП сопровождается устойчивой повышенной водонасыщенностью, что резко снижает фазовую проницаемость для нефти и приводит к уменьшению ее дебитов. В этом случае добывающие скважины необходимо гидрофобизировать. Гидрофобизирующими средствами служат композиции на основе неполярных углерод- и полярных водорастворимых катионовых ПАВ. В качестве неполярных жидкостей применяют нефть, ШФЛУ, а полярных – водный раствор соляной кислоты. Технология обработки состоит в закачке указанных ПАВ из расчета 0,5-2 м3 на 1 м толщины пласта и последующей продавке нефтью. Гидрофобизация ПЗП снижает до нуля фильтрационное сопротивление притоку нефти в скважины за счет удаления воды и снижения набухания глинистых включений. В АО РИТЭК разработан гидрофобный материал «Полисил» на основе кремния с частицами микронного и субмикронного размера (0,1-30 мкм) с площадью поверхности 100-300 м2 на 1 г вещества. Частицы порошка легко проникают в пористую поверхность и придают ей гидрофобные свойства. Для обработки скважин в зависимости от толщины пласта требуется от 5 до 15 кг материала. Технология нуждается в специальном оборудовании и может проводиться в рамках планового ремонта скважин.

На поздней стадии разработки нефтяных месторождений для селективной изоляции водопроводимых пропластков успешно используют пены – высококонцентрированные дисперсные системы газа в жидкости, в которой дисперсной фазой является газ, а дисперсионной средой – жидкость. Для ограничения водопритоков применяют двух- и трехфазные пены. Первые представляют собой аэрированный водный раствор ПАВ, во вторые для дополнительной стабилизации вводят твердую фазу (глинистые частицы).

В нефтепромысловой практике, как правило, в качестве дисперсионной фазы используют азот и природный газ, а дисперсионной среды – пластовую воду. В зависимости от объемного содержания фаз гетерогенная смесь может находится в различных фазовых соотношениях (газовая эмульсия, пена, аэрозоль).

При закачке пены в пласт давление в ПЗП повышается и система переходит в состояние газовой эмульсии, в которой размеры газовых пузырей меньше эквивалентного диаметра поровых каналов пласта. В результате продавливания газовой эмульсии в поры и микротрещины в результате адсорбции ПАВ происходит разрушение гидратных слоев на поверхности породы и ее частичная гидрофобизация. Пузырьки газа, удерживаясь на гидрофобизированной поверхности, придают системе градиент давления сдвига, вследствие чего создается барьер для движения воды в наиболее проницаемых дренах.

59. Вытеснение нефти из пластов растворами полимеров. Какая проблема решается закачкой растворов полимеров. Рассказать технологию закачки. Какую работу выполняет раствор полимеров в пласте.

Нагнетание химических реагентов вызывает спектр физико-химических механизмов вытеснения нефти. Так нагнетание водных растворов ПАВ, кислот, щелочей, полимеров, приводит к изменению свойств пластовой воды и поверхностей раздела между водой, нефтью и горной породой, к уменьшению параметра относительной подвижности и улучшению нефтеотмывающих свойств воды. Уменьшение относительной подвижности воды и нефти увеличивает охват пласта воздействием и коэффеициент вытеснения нефти, улучшает смачиваемость горной породы водой.

Полимерное заводнение.

Метод нагнетания водного раствора полимера – это закачка слабоконцентрированного раствора высокомолекулярного химического реагента – полимера. Полимеры представляют собой вещества с высокой молекулярной массой порядка 104 – 106. Это вещество обладает способностью значительно повышать вязкость воды, снижая тем самым ее подвижность, что приводит к повышению охвата пласта воздействием, по сравнению с заводнением. Полимерное заводнение применяется на нефтесодержащих пластах со сравнительно высокой вязкостью нефти и соотношением коэффициентов подвижности воды и нефти и умеренной неоднородностью. Метод полимерного заводнения не используется для разработки залежей нефти с газовыми шапками, трещинным коллектором, высокой проницаемостью и активным напором подошвенных вод. Размеры оторочки варьируются от 0,1 до 0,4 Vпор. При использовании полимера соотношение коэф-ов подвижностей уменьшается и соответственно, увеличивается коэф-т охвата пласта по площади и мощности. Соотношение коэф-ов подвижностей воды и нефти записывается как M=λв/λн, где λ=к/µ. Основными механизмами увеличения нефтеотдачи при нагнетании водных растворов полимеров являются:

- Загущение воды, которое приводит к снижению соотношения подвижностей нефти и воды и снижению возможности прорыва воды к добывающим, скважинам;

- Закупорка высокопроницаемых каналов вследствие адсорбции полимеров на поверхности горной породы. Охват воздействием низкопроницаемых коллекторов при этом увеличивается.

Адсорбция полимеров поверхностью пористой среды возрастает с увеличением солености пластовой воды и уменьшением проницаемости пласта. Количество адсорбированного полимера зависит от структуры пористой среды, ее вещественного и компонентного состава, свойств, насыщающих пористую среду жидкостей типа полимера, его концентрации, молекулярного веса, скорости фильтрации в пористой среде, температуры и величины водородного показателя среды рН. Адсорбция на поверхности горной породы зависит от вида полимера.

Для вытеснения нефтей в качестве полимера используют:

-полиакриламиды

-полимеры на основе целлюлозы

- полисахариды

- полиэтиленокиды

В качестве растворителя может применяться как пресная, так и минерализованная вода с различным значением водородного показателя среды рН.

60. Вытеснение нефти из пластов мицелярными растворами. Какая проблема решается закачкой мицелярных растворов. Рассказать технологию закачки. Какую работу выполняет мицелярный раствор в пласте.

Наиболее приемлемым для этого процесса считается раствор полиакриламида (ПАА) известкового способа нейтрализации. Добавка ПАА к нагнетаемой воде повышает ее вязкость и, следовательно, уменьшает относительную вязкость пластовой нефти: mо=mн/mв. Это повышает устойчивость раздела между водой и нефтью (фронта вытеснения), способствуя улучшению вытесняющих свойств воды и более полному вовлечению объёма залежи в разработку.

Метод рекомендуется для залежей с повышенной вязкостью пластовой нефти — 10—50 мПа с. Учитывая возможность снижения приемистости нагнетательных скважин вследствие повышенной вязкости раствора и соответственно низких темпов разработки залежей, метод целœесообразно применять при значительной проницаемости пород-коллекторов—более 0,1 мкм2. Благоприятны залежи с относительно однородным строением продуктивных пластов, преимущественно порового типа.

При фильтрации раствора в пористой среде пород происходит адсорбция полимера на стенках пустот. Интенсивность этого процесса особенно ощутима при движении в пласте первой порции раствора, при значительной обводненности пластов минœерализованной водой в результате предшествующей разработки, при высокой глинистости пород-коллекторов. Так как адсорбция может воздействовать на эффективность процесса вытеснения одновременно в двух противоположных направлениях, то по каждому объекту она должна быть предметом специальных исследований. Вместе с тем считают, что наиболее эффективно метод должна быть применен на новых залежах (с низкой водонасыщенностью пластов) при низкой глинистости коллекторов (не более 8—10%). Вследствие потери полимерами при высокой температуре способности загущать воду метод целœесообразно применять при температуре пластов не выше 70—90°С. Допустимая глубина залегания продуктивных отложений определяется потерями давления на трение вязкой жидкости в нагнетательных скважинах и величиной геотермического градиента.

Вытеснение нефти водными растворами поверхностно-активных веществ ПАВ.

Наиболее применимыми считаются растворы неионогенных ПАВ типа ОП-10. Судя по эксплуатационным данным, добавка ПАВ в нагнетаемую воду улучшает отмывающие свойства воды: снижается поверхностное натяжение воды на границе с нефтью, уменьшается краевой угол смачивания и т. д. Метод рекомендуется для залежей с водонасыщенностью пласта не более 15% (с учетом способности реагента к селœективной адсорбции на стенках во-донасыщенных пустот породы), при вязкости пластовой нефти 5—30 мПа-с, проницаемости пласта выше 0,03—0,04 мкм2, температуре пласта до 70 °С.

Следует отметить, что по мере накопления материалов о проведении опытно-промышленных работ в разных геологопромысловых условиях представления об эффективности метода становятся менее оптимистичными. Сегодня возможный прирост коэффициента извлечения нефти от применения метода оценивают примерно в 3-5%.

Вытеснение нефти мицеллярными растворами.

При этом методе в качестве вытесняющего агента͵ в пласт нагнетают мицеллярный раствор (в объёме около 10 %)

В разных литературных источниках указываются различные предельные значения температуры от пустотного пространства залежи), узкую оторочку которого перемещают широкой оторочкой буферной жидкости — раствора полимера, а последнюю—рабочим агентом—водой. Состав мицеллярного раствора: легкая углеводородная жидкость, пресная вода, поверхностно-активные вещества, стабилизатор.

Раствор представляет собой микроэмульсню, состоящую из агрегатов (мицелл) молекул воды и УВ. Метод предусматривает достижение близких значений вязкости пластовой нефти, мицеллярного раствора и буферной жидкости. Механизм процесса находится в стадии изучения.

Метод предназначается в основном для извлечения остаточной нефти из заводненных пластов. Для применения известных мицеллярных растворов рекомендуется выбирать залежи нефти в терригенных коллекторах порового типа (нетрещиноватых). относительно однородных, не содержащих карбонатного цемента. Эти требования обусловлены тем, что при перемещении раствора по резко неоднородному коллектору и при контакте его с карбонатами может нарушаться его структура. Средняя проницаемость пластов желательна более 0,1 мкм2. Остаточная нефтенасыщенность пласта технологически не ограничивает применения метода, но вследствие большой стоимости работ по созданию оторочки экономически целœесообразно, чтобы она была более 25—30%. Рекомендуемая вязкость пластовой нефти от 3 до 20 мПа×с, поскольку при более высокой вязкости требуется и большая вязкость раствора и буферной жидкости, что обусловливает технологические трудности в подготовке и нагнетании растворов. В связи с неблагоприятным влиянием солей на структуру раствора метод целœесообразно применять для эксплуатационных объектов, разрабатываемых с внутриконтурным нагнетанием пресной воды. Температура пластов не должна превышать 70—90 °С. Допустимая глубина залегания пластов определяется теми же факторами, что и при вытеснении нефти растворами ПАВ.

Заводнение с использованием химических реагентов, это группа новых методов основанная на нагнетании в продуктивные пласты в качестве вытесняющего агента водных растворов химических веществ с концентрацией 0,001 – 0,4% и более. Обычно в пласте создают оторочки растворов в объеме 10 – 50% общего объема пустой залежи, которые вытесняют нефть. Затем оторочку перемещают путем нагнетания в пласт обычной воды, называемой в этом случае рабочим агентом. Методы могут применяться при тех же плотностях сеток скважин, что и при обычном заводнении. С их помощью молено существенно расширить диапазон значений вязкости пластовой нефти (до 50 – 60 мПа-с), когда возможно применение методов воздействия, в которых большую роль играет заводнение. Применение методов в начальных стадиях разработки позволяет ожидать увеличение коэффициентов извлечения нефти по сравнению с их значением при обычном заводнении на 3 – 10 пунктов. Ниже кратко характеризуются физико-химические методы с добавкой в воде одного из химических веществю

Полимерное заводнение. Наиболее приемлимым считается раствор полиакриламина (ПАА) известкового способа нейтрализации.

Добавка ПАА к нагнетаемой воде повышает ее вязкость и, следовательно, уменьшает относительную вязкость пластовой нефти. Это повышает устойчивость раздела между водой и нефтью (фронта вытеснения), способствует улучшению вытесняющих свойств воды и более полному вовлечению объема залежи в разработку. Метод рекомендуется для залежей с повышенной вязкостью пластовой нефти (10 – 50 мПа-с). Учитывая возможность снижения приемистости нагнетательных скважин вследствии повышенной вязкости раствора и соответственно снижения темпов разработки залежей, метод целесообразно применять при проницаемости пород-коллекторов более 0,1 мкм2. При фильтрации раствора в обводненной пористой среде пород происходит адсорбция полимера на стенках пустот, поэтому наиболее эффективно метод может быть применен на новых залежах (с низкой водонасыщенностью пластов), при глинистости коллекторов не более 8-10%. Вследствие потери полимерами при высокой температуре пластов не выше 800С. В последнее время разработаны композиции полимеров с другими химреагентами, позволяющими использовать их и в поздние периоды разработки.

При щелочном заводнении в качестве химреагентов, добавляемых к нагнетаемой в пласты воде, можно использовать каустическую или кальценированную соду, аммиак, силикат натрия. При взаимодействии щелочи с органическими кислотами пластовой нефти образуются поверхностно-активные вещества, улучшающие смачиваемость породы. В результате улучшаются отмывающие свойства воды. Метод наиболее эффективен в гидрофобных малоглинистых коллекторах. На месторождениях Западной Сибири и Татарии в довольно широком объеме осуществляются опытно-промышленные работы по вытеснению нефти оторочкой серной кислоты.

Вытеснение нефти водными растворами поверхностно-активных веществ (ПАВ). Наиболее применимым считаются растворы неионогенных ПАВ типа ОП-10. Судя по экспериментальным данным, добавка ПАВ в нагнетательную воду улучшает отмывающие свойства воды: повышается смачиваемость породы, снижается поверхностное натяжение воды на границе с нефтью и т.д. Поскольку главным результатом воздействия ПАВ является улучшение смачиваемости, его применение целесообразно при повышенной гидрофобности коллекторов. Впоследствии высокой адсорбционной способности ПАВ в водонасыщенных пластах метод рекомендуют применять с начала разработки. Метод рекомендуется при вязкости пластовой нефти 10-30мПа-с, проницаемости пласта выше 0,03-0,04 мкм2, температуре пласта до 700С. Следует отметить, что по мере накопления материалов о проведении опытно-промышленных работ в разных геолого-промысловых условиях представления об эффективности добавок ПАВ в чистом виде становятся менее оптимистичными. Прирост нефтеотдачи оказывается меньше ожидаемого. В настоящее время популярность приобретают методы, основанные на применении композиций ПАВ и других реагентов.

61. Температура в пластах и ее изменение в процессе разработки месторождения. Геотермический градиент. Как влияет изменение температуры на процесс извлечения нефти.

Геотермический градиент — физическая величина, описывающая прирост температуры горных пород в °С на определённом участке земной толщи. Математически выражается изменением температуры, приходящимся на единицу глубины. В геологии при расчёте геотермического градиента за единицу глубины приняты 100 метров. В различных участках и на разных глубинах геотермический градиент непостоянен и определяется составом горных пород, их физическим состоянием и теплопроводностью, плотностью теплового потока, близостью к интрузиям и другими факторами.

Обычно геотермический градиент колеблется от 0,5–1 до 20°С и в среднем составляет около 3°С на 100 метров.

В общем случае температура пласта увеличивается с глубиной. Степень этого увеличения называется геотермическим градиентом. До глубины 50-400 футов, где температура находится под влиянием изменений температуры атмосферы и циркулирующих грунтовых вод, геотермический градиент относительно постоянен. Однако, будучи достаточно постоянной в какой-либо одиночной скважине, величина геотермического градиента может существенно варьировать от участка к участку, даже в пределах одновозрастного горизонта.

В отличие от пластового давления, обычно снижающегося по мере извлечения из залежи нефти и газа, пластовая температура в основном остается постоянной.

Измерение пластовой температуры производится самозаписывающими термометрами, опускаемыми в скважину. Записывающий прибор может находиться внутри инструмента, называемого температурной бомбой, которая опускается в скважину, или оставаться на поверхности, а в скважину в этом случае опускается только сам термометр [26]. Если необходимо замерить величину температуры, соответствующей термическому равновесию, скважина должна быть остановлена на несколько дней или даже недель, чтобы исключить влияние различных локальных факторов, могущих привести к изменению температуры, как, например, схватывание цемента за колонной, поступление в скважину газа или воды вследствие нарушения колонны и т.п.

Величина геотермического градиента равна отношению разности пластовой температуры и среднегодовой температуры на поверхности к глубине залегания пласта.

Геотермическии градиент = (пластовая температура ‑ среднегодовая температура)/глубина залегания пласта

Геотермический градиент обусловлен наличием глубинного теплового потока из недр к поверхности Земли. Величина его зависит от теплопроводности пород земной коры, а также от интенсивности теплового потока. Последний зависит от тектонического строения района, а также от условий рассеивания тепла в окружающее пространство и во многом определяется рельефом, климатом, растительным покровом и другими факторами, действующими как в геологическом прошлом, так и в настоящее время. В частности, очень низкие значения Г встречаются в зоне распространения многолетнемерзлых пород, где возможны даже аномальные отрицательные значения градиента. Например, на севере Тюменской области на огромной территории мерзлота имеет двухслойное строение, а между двумя слоями мерзлых пород находится довольно мощный слой талых пород, насыщенных водой.  

Известно, что в недрах месторождений температура возрастает с глубиной, начиная от так называемого нейтрального слоя с неизменной температурой. Продуктивные пласты имеют природную (начальную) температуру, значение которой определяется закономерностями изменения температуры по разрезу месторождения.

Начальная температура продуктивных пластов оказывает большое влияние на фазовое состояние УВ в пластовых условиях, на вязкость пластовых жидкостей и газов и, следовательно, на условия их фильтрации. В процессе разработки залежей природные термические условия могут претерпевать устойчивые или временные изменения в связи с нагнетанием в больших объемах в пласты различных агентов, имеющих температуру, большую или меньшую начальной пластовой.

Замеры температуры можно производить в скважинах, закрепленных обсадными трубами и не закрепленными ими. Перед замером скважина должна быть оставлена в покое на 20-25 суток для того, чтобы в ней восстановился нарушенный бурением или эксплуатацией естественный температурный режим. Однако в промысловых условиях нередко приступают к замерам по истечении всего лишь (4-6 )час. после остановки скважины. В процессе бурения температуру обычно замеряют в скважинах, временно остановленные по техническим причинам.

В эксплуатационных скважинах замеры температуры производят после подъема насоса; эти замеры оказываются надежными лишь для интервала глубин залегания продуктивного (эксплуатационного) пласта. Для получения надежных температурных данных в других интервалах пласта скважину необходимо заполнить глинистым раствором и остановить на более или менее длительный срок (иногда на 20 сут). Для этой цели удобнее использовать бездействующие или временно законсервированные эксплуатационные скважины. При замерах температуры следует учитывать проявления газа и связанное с этим возможное понижение естественной температуры.

Данные замеров температур могут быть использованы для определения геотермической ступени и геотермического градиента.

Геотермическую ступень – расстояние в метрах, при углублении на которое температура пород закономерно повышается на 1°С, определяют по формуле

где G - геотермическая ступень, м/°С;

Н - глубина места замера температуры, м;

H - глубина слоя с постоянной температурой, м;

Т - -температура на глубине °С;

T - средняя годовая температура воздуха на поверхности, oС.

Природная геотермическая характеристика месторождения служит фоном для выявления всех проявляющихся при разработке вторичных аномалий температуры. Процесс изучения природного теплового режима месторождения включает температурные измерения в скважинах, построение геотерм и геотермических разрезов скважин, определение значений геотермического градиента и геотермической ступени, определение температуры в кровле продуктивных пластов, построение геолого-геотермических профилей и геотермических карт.

Для получения природной геотермической характеристики температурные замеры должны проводиться до начала или в самом начале разработки залежей по возможно большему числу скважин, равномерно размещенных по площади.

Сверху вниз по стволу скважины высокоточным электри­ческим, самопишущим и другими приборами, а также максимальным ртутным термометром проводят измерение температуры с определенным шагом, равным единицам метров в продуктивных интервалах разреза и десяткам метров в остальной его части.

По данным температурных исследований строят термограмму, т.е. кривую, отражающую рост естественной темпе­ратуры пород с увеличением глубины. Такие термограммы называют геотермами Г0.

Геотермический градиент – характеризует изменение температуры, при изменении глубины на 100м определяется по формуле

Таким образом, зависимость между геотермической ступенью и геотермическим градиентом выражается соотношением:

Для верхних слоев земной коры (10-20 км) величина геотермической ступени в среднем равна 33 м/ °С и колеблется в значительных пределах для различных участков земного шара. Например, в районе Пятигорска геотермическая ступень равна 1,5 м, Петербурга - 19,6 м, Москвы -38,4 м, в районе Повожья и Башкирии – 50 м. Физическое состояние и свойства нефти (вязкость, поверхностное натяжение, способность поглощать газ) резко меняются с изменением температуры, а следовательно, изменяется и способность нефти двигаться по пласту к забоям скважин.

62. Вытеснение нефти из пластов горячей водой и паром. Проблема возникающая при закачке горячей воды в пласт.

С повышением температуры вязкости нефти и воды уменьшаются. При этом вязкость нефти, если она в обычных пластовых условиях значительно превышала вязкость воды, снижается более существенно. Соотношение подвижностей нефти и воды изменяется в лучшую сторону. Этот экспериментально установленный факт -- главная причина использования закачки в пласт воды с повышенной температурой или водяного пара для роста нефтеотдачи пластов, содержащих нефть увеличенной вязкости. Кроме того, при закачке в пласт горячей воды или водяного пара из нефти при соответствующих условиях испаряются легкие фракции углеводородов и переносятся потоками пара и воды по пласту к забоям добывающих скважин, дополнительно способствуя увеличению извлечения нефти из недр.

Горячую воду и пар получают в парогенераторах (котлах) высокого давления и закачивают в пласт через нагнетательные скважины специальной конструкции и со специальным оборудованием, предназначенным для работы в условиях высоких температур и давлений.

При проектировании и осуществлении закачки в пласт горячей воды и водяного пара важно знать термодинамическое, состояние воды: жидкое, в виде пара, в виде смеси воды и пара или даже в закритическом состоянии.

Вытеснение нефти водой. Анализируя влияние теплового воздействия на физико-химические свойства пластовой нефти, можно сделать вы­вод, что для повышения нефтеотдачи залежей высоковязкой нефти необходимо увеличивать температуру нефтяного пла­ста Этого можно добиться путем нагнетания в пласт нагре­той жидкости В качестве теплоносителя наиболее подходя­щим является вода, которая способна переносить гораздо большее количество тепла в расчете на единицу массы, чем другие жидкости

При закачке нагретой жидкости в пласте можно выде­лить три основные зоны:

1 - зона вытеснения горячей водой

2 - зона вытеснения водой при пошаговой температуре

3 - незаводненная зона

В зоне 1, двигаясь по пласту, горячая вода отдает породе свою теплоту, в результате чего в направлении вытеснения температура воды постепен­но снижается до температуры пласта

Повышение температуры пласта влечет за собой сниже­ние вязкости и повышение подвижности нефти, тепловое расширение скелета породы и жидкости, изменение межфаз­ного взаимодействия на границе нефть - вода, степени де­сорбции вешеств, осажденных на стенках пор. и изменение фазовой проницаемости нефти и воды, рост смачиваемости водой поверхности минералов пород коллектора

Нагретая маловязкая нефть из этой зоны вытесняется го­рячей водой Кроме того, нефть частично вытесняется за счет расширения породы - коллектора и заполняющей его жидкости В результате этого достигается снижение оста­точной нефтенасыщенности Размеры прогретой зоны зави­сят от объема прокаченной нагретой воды

В зоне 2 нефть вытесняется водой, температура которой равна начальной температуре пласта.

В зоне 3 фильтруется безводная нефть.

Остаточная нефтенасышенность зависит от межфазного натяжения и отношения вязкости нефти и воды Чем больше межфазное натяжение и вязкость нефти, тем больше и вели­чина остаточной нефтенасыщенности Механизм уменьшения остаточной нефтенасыщенности с ростом температуры мо­жет быть объяснен следующим образом Когда порода гид­рофильна, т.е. смачивается водой лучше, чем нефтью, меж­фазное натяжение системы нефть - вода является единствен­ным параметром, определяющим взаимодействие фаз Если же порода лучше смачивается нефтью, чем водой, г с она гидрофобна, то при росте температуры увеличивается де­сорбция компонентов нефти, ранее адсорбированных на по­верхности породы В обоих случаях это приводит к сниже­нию остаточной нефтенасыщенности.

Снижение отношения вязкостей и остаточной нефтена­сыщенности, замедляют скорость распространения фронта воды, тем самым увеличивается добыча нефти за безводный период При вытеснении маловязкой нефги основной эффект от теплового воздействия достигается за счет термическою расширения, т.к. в этом случае ц „ очень слабо зависит от температуры

С ростом температуры вязкость тяжелой нефти резко па­дает и смачиваемость стенок пор сильно влияет на вытесне­ние нефти, а роль теплового расширения значительно мень­ше на эффективность процесса

Вытеснение нефти паром - наиболее распространенный метод увеличения нефтеотдачи пластов, так как при вытеснении высоко­вязких нефтей он обладает явными преимуществами перед дру­гими методами.

Механизм процесса.

В этом процессе пар нагнетают с поверхности в пласты с низкой температурой и высокой вяз­костью нефти через специальные паронагнетательные скважины, расположенные внутри контура нефтеносности. Пар, обладающий большой теплоемкостью — более 5000 кДж/кг — в 3—3,5 раза выше горячей воды при 230 °С, вносит в пласт значительное коли­чество тепловой энергии, которая расходуется на нагрев пласта и снижение относительной проницаемости, вязкости и расширение всех насыщающих пласт агентов — нефти, воды, газа. В пласте образуются три следующие зоны, различающиеся по температуре, насыщению и характеру вытеснения (рис. 3).

Р ис. 3. Распределение температуры Т и насыщенности 5 по длине однород­ного образца L при вытеснении нефти паром.

Зона: / — дистилляции нефти; // — конден­сации легких фракций нефти и пара; ///— конвективного прогрева пласта и объемного расширения нефти

1. Зона пара вокруг нагнетательной скважины с температурой, изменяющейся от температуры пара до температуры начала кон­денсации (400-200 °С), в которой происходят экстракция из нефти легких фракций (дистилляция нефти) и перенос (вытеснение) их паром по пласту, т. е. совместная фильтрация пара и легких фрак­ций нефти.

2. Зона горячего конденсата, в которой температура изменяется от температуры начала конденсации (200 °С) до пластовой, а горя­чий конденсат (вода) в неизотермических условиях вытесняет лег­кие фракции и нефть.

3. Зона с начальной пластовой температурой, не охваченная тепловым воздействием, в которой происходит вытеснение нефти пластовой водой.

Зоны пара и горячего конденсата по мере продолжения про­цесса расширяются, а третья зона с начальной пластовой темпера­турой сокращается. В конечном счете, зона горячего конденсата, а затем и зона пара могут достигнуть добывающих скважин. Тогда горячая вода и пар прорываются в скважины и извлекаются с нефтью на поверхность. После этого продолжение процесса на­гнетания пара практически нецелесообразно.

При нагреве пласта происходят дистилляция нефти, снижение вязкости и объемное расширение всех пластовых агентов, измене­ние фазовых проницаемостей, смачиваемости пласта и подвижностей нефти и воды и др.

Основную долю эффекта вытеснения нефти (40-50 %) обеспе­чивает снижение вязкости нефти, затем - дистилляция нефти и изменение подвижностей (по 18-20 % ) и в меньшей мере - расши­рение нефти и смачиваемость пласта.

Технология и система разработки.

Продвижение по пласту зон пара и горячего конденсата сопровождается потерями, уходом теплоты из нефтяного пласта в окружающие породы, кото­рые пропорциональны температуре этих зон на границе с окру­жающими породами, температуре на поверхности контакта с ними, продолжительности контакта и др.

При малой толщине нефтяного пласта на границе с окружаю­щими породами всегда будет высокая температура, относительная поверхность теплообмена (по отношению к объему пласта) также будет очень большой, вследствие чего при больших расстояниях между скважинами применение пара, как правило, неэффективно. Поэтому для оптимальной технологии и систем вытеснения нефти паром характерно то, что способствует сокращению потерь теплоты и достижению более полного и равномерного прогрева всего объема залежей.

С этой целью для этого метода выбирают нефтяные пласты с достаточно большой толщиной (15 м и более), вскрывают их в нагнетательных скважинах в средней части, системы размещения скважин принимают площадные с плотностью сетки от 1-2 до 4-8 га/скв, обеспечивает максимально высокий темп нагнетания пара с чередующейся закачкой пара и воды, после достаточного прогрева пластов переходят на их заводнение и др.

К недостаткам метода вытеснения нефти паром следует прежде всего отнести необходимость применения высококачественной чистой воды для парогенераторов, чтобы получить пар с насыщенностью 80% и теплоемкостью 5000 кДж/кг. В воде, питающей парогенератор, должно содержаться менее 0,005 мг/л твердых взвешенных частиц и полностью должны отсутствовать органические вещества (нефть, соли), растворенный газ (особенно кислород), а также катионы магния и кальция (нулевая жесткость).

63. Разработка месторождений путем закачки теплоносителей в пласт методом «тепловых оторочек». Привести технологию закачки. Какая работа выполняется в пласте при этом методе.

Важнейшее средство повышения тепловой эффективности термических методов — это метод создания тепловых оторочек с последующим их перемещением другими вытесняющими агентами (например, водой).

Использование тепловых оторочек позволяет получить несколько меньшую нефтеотдачу по сравнению с этим показателем при непрерывной закачке теплоносителей в пласт. Но в таком случае на подготовку горячей воды или пара тратится значительно меньше энергии.

Метод тепловой оторочки — метод повышения нефтеотдачи продуктивного пласта, основанный на создании в нём перемещающейся зоны повышенных температур, что приводит к разжижению нефти и вытеснению её из коллектора.

Он относится к разновидности термических методов добычи нефти.

Используется при разработке месторождений тяжёлых и вязких нефтей (свыше 10-2 Па•с).

Наиболее благоприятные условия применения тепловой оторочки метода: большая толщина пласта (свыше 10 м), глубина залегания до 1000 м, высокие значения пористости (свыше 20%) и нефтенасыщенности (свыше 50%).

Тепловая оторочка создаётся закачкой в пласт теплоносителя (горячая вода, пар) через нагнетательные скважины под давлением до 16 МПа при температуре 100-350°С. Использование теплоизоляционных труб позволяет снизить потери тепла при движении теплоносителя к забою нагнетательных скважин до 2-3%, но значительная часть поступающего в пласт тепла рассеивается в породах, окружающих нефтенасыщенный коллектор. Теплопотери увеличиваются пропорционально увеличению прогретых площадей пласта.

Длительная закачка теплоносителя приводит к постепенному снижению эффективности этого метода воздействия на пласт. Может наступить такой момент, когда дополнительный объём добытой нефти окажется меньше, чем её требуется для производства теплоносителя.

Поэтому практически во всех случаях после закачки некоторого объёма теплоносителя (1-2 объёма пор нефтенасыщенного коллектора) переходят к закачке холодной воды, которая перемещает тепловую оторочку от нагнетательных скважин к добывающим. Нагнетание холодной воды ведут с максимально возможным темпом, что способствует большей сохранности тепловой оторочки.

При проектировании разработки нефтяных месторождений с применением тепловой оторочки метода наиболее важен выбор момента перехода от нагнетания теплоносителя к закачке холодной воды.

Метод тепловой оторочки используется также в комплексе с методом внутрипластового горения. Наиболее эффективен после реализации сухого внутрипластового горения, при котором значительная часть генерированного тепла остаётся в продуктивном пласте или рассеивается в окружающих породах. В последнем случае применение тепловой оторочки метода способствует существенному росту экономических показателей разработки месторождений, т.к. снижаются затраты на закачку воздуха, утилизацию газов горения и эксплуатацию скважин.

Впервые сочетание внутрипластового горения и заводнения с образованием движущейся тепловой оторочки реализовано на месторождении Ницу (Япония), где после выжигания части объёма пласта нефть вытеснялась за счёт естественного водонапорного режима.

В СССР тепловой оторочки метод впервые применён на месторождении Охинское (Сахалин), где после нагнетания в пласт пара производили закачку холодной воды. Тепловой оторочки метод используется в большинстве технологий закачки теплоносителя или внутрипластового горения как последняя завершающая стадия разработки скважинным или термошахтным способом (Ярегское, Кенкиякское и другие месторождения).

Тепловая оторочка

Создание тепловых оторочек с после­дующим их перемещением другими вытесняю­щими агентами (например, водой) является важ­нейшим средством повышения тепловой эффективности термических процессов.

Тепловая оторочка формируется в пласте на первом этапе реализации технологий паротеплового воздействия или внутрипластового горе­ния с последующим перемещением ее путем закачки ненагретой воды. Тепловая оторочка может быть очаговой (при площадном воздей­ствии) и линейной (при одно- и многорядных системах размещения скважин), она позволяет повысить экономический эффект от внедрения тепловых методов за счет снижения расхода пара или воздуха.

Выбор размеров тепловых оторочек зависит прежде всего от геолого-физических параметров продуктивных пластов, темпов ввода в пласт или генерации в нем теплоты и расстояния меж­ду добывающими и нагнетательными скважи­нами. Оптимальный объем тепловой оторочки составляет 0,6—0,8 объема порового простран­ства разрабатываемого участка. С увеличением расстояния между скважинами требуемые размеры тепловой оторочки возрастают, а при редких сетках скважин технология создания теп­ловой оторочки теряет свои преимущества.

В процессе создания тепловой оторочки с последующим проталкиванием ее к забоям до­бывающих скважин закачкой ненагретой воды она может деформироваться из-за больших по­терь тепла в зоне контакта фронта ненагретой воды с прогретой частью пласта (при непоршне­вом вытеснении), за счет чего снижается про­должительность существования тепловой отороч­ки и сохранения ее размера.

Для увеличения срока существования тепловой оторочки перед нагнетанием ненагретой воды в пласт закачива­ют определенный объем раствора полимера, об­ладающего низкой теплопроводностью и высо­кой (по сравнению с водой) вязкостью, что обес­печивает ее роль теплоизолирующего экрана (уменьшающего интенсивность теплообмена в зоне отмеченного контакта и предупреждающе­го прорыва ненагретой воды по более проницае­мым зонам слоисто-неоднородного пласта). В качестве химреагентов может быть использован гидролизованный полиакрилонитрил (ГИПАН) или полиакриламид (ПАА).

Оптимальные условия применения:

— стадия разработки — желательно начальная;

— обводненность — не более 50%;

— приемистость скважин — не менее 45 т/сут.;

— плотность сетки — 2-3 га/скв.;

— концентрация рабочего агента (полимера в водном растворе 0,5%);

— объем полимерной оторочки — 10% порового объема нагретой части пласта.

64. Тепловые методы повышения нефтеотдачи пласта. Рассказать технологию закачки горячей воды, пара.

К тепловым методам повышения нефтеотдачи относятся

1. вытеснение горячей водой,

2. вытеснение паром,

3. внутрипластовое горение,

4. тепловая обработка призабойной зоны скважин.

При современной технологии разработки нефтяных месторождений с поддержанием пластового давления путем закачки воды в пласт не обеспечивается полное извлечение геологическихзапасов нефти, вследствие чего в недрах остается свыше 50 процент, а по пластам с высоковязкой нефтью до 80-85 нефти от геологических запасов. В связи с тем, что число вводимых в разработку месторождений со сложными горно-геологическими условиями и с высоковязкой нефтью все время увеличивается, наметилась тенденция снижения среднего коэффициента нефтеотдачи по отрасли.

Особое место тепловых методов воздействия на пласт обусловлено тем, что для их реализации используются широко доступные агенты - вода и воздух, и масштабы внедрения этих методов не зависят от возможностей получения больших количеств химических реагентов, необходимых для внедрения физико-химических методов повышения нефтеотдачи пластов.

Другими важнейшим преимуществом термических методов перед большинством физико-химических методов является возможность достижения более высокой нефтеотдачи при различных условиях залеганиянефтяных месторождений. Нередко термические методы применяют когда никаким другим методом извлечь нефть из пласта не удается.

Поэтому месторождения высоковязкой нефти - первоочередные объекты для тепловых методов. К числу таких объектов относятся прежде всего месторождения Каражанбас и Кенкияк и др.

Тепловые методы разработки нефтяных месторождений делятся на два принципиально различных вида:

1. Первый, основанный на внутрипластовых процессах горения, создаваемых путем инициирования горения коксовых остатков в призабойной зоне нагнетательных скважин с последующим перемещением фронта горения путём нагнетания воздуха (сухое горение) или воздуха и воды (влажное горение).

2. Второй, наиболее широко применяемый в России и за рубежом, основанный на нагнетании (с поверхности) теплоносителей в нефтяные пласты.

Методы нагнетания теплоносителя в нефтяные пласты имеют две принципиальные разновидности технологии:

1. Первая – основана на вытеснении нефти теплоносителем и его оторочками. Такая разновидность получила в зависимости от вида используемого теплоносителя наименования: паротеплового воздействия на пласт (ПТВ) и воздействия горячей водой (ВГВ)

2. Вторая – на паротепловой обработке призабойной зоны добывающих скважин (ПТОС). В этом случае в качестве теплоносителя используется насыщенный водяной пар.

С повышением температуры вязкости нефти и воды уменьшаются. При этом вязкость нефти, если она в обычных пластовых условиях значительно превышала вязкость воды, снижается более существенно. Соотношение подвижностей нефти и воды изменяется в лучшую сторону. Этот экспериментально установленный факт -- главная причина использования закачки в пласт воды с повышенной температурой или водяного пара для роста нефтеотдачи пластов, содержащих нефть увеличенной вязкости. Кроме того, при закачке в пласт горячей воды или водяного пара из нефти при соответствующих условиях испаряются легкие фракции углеводородов и переносятся потоками пара и воды по пласту к забоям добывающих скважин, дополнительно способствуя увеличению извлечения нефти из недр.

Горячую воду и пар получают в парогенераторах (котлах) высокого давления и закачивают в пласт через нагнетательные скважины специальной конструкции и со специальным оборудованием, предназначенным для работы в условиях высоких температур и давлений.

При проектировании и осуществлении закачки в пласт горячей воды и водяного пара важно знать термодинамическое, состояние воды: жидкое, в виде пара, в виде смеси воды и пара или даже в закритическом состоянии.

Вытеснение нефти водой. Анализируя влияние теплового воздействия на физико-химические свойства пластовой нефти, можно сделать вы­вод, что для повышения нефтеотдачи залежей высоковязкой нефти необходимо увеличивать температуру нефтяного пла­ста Этого можно добиться путем нагнетания в пласт нагре­той жидкости В качестве теплоносителя наиболее подходя­щим является вода, которая способна переносить гораздо большее количество тепла в расчете на единицу массы, чем другие жидкости

При закачке нагретой жидкости в пласте можно выде­лить три основные зоны:

1 - зона вытеснения горячей водой

2 - зона вытеснения водой при пошаговой температуре

3 - незаводненная зона

В зоне 1, двигаясь по пласту, горячая вода отдает породе свою теплоту, в результате чего в направлении вытеснения температура воды постепен­но снижается до температуры пласта

Повышение температуры пласта влечет за собой сниже­ние вязкости и повышение подвижности нефти, тепловое расширение скелета породы и жидкости, изменение межфаз­ного взаимодействия на границе нефть - вода, степени де­сорбции вешеств, осажденных на стенках пор. и изменение фазовой проницаемости нефти и воды, рост смачиваемости водой поверхности минералов пород коллектора

Нагретая маловязкая нефть из этой зоны вытесняется го­рячей водой Кроме того, нефть частично вытесняется за счет расширения породы - коллектора и заполняющей его жидкости В результате этого достигается снижение оста­точной нефтенасыщенности Размеры прогретой зоны зави­сят от объема прокаченной нагретой воды

В зоне 2 нефть вытесняется водой, температура которой равна начальной температуре пласта.

В зоне 3 фильтруется безводная нефть.

Остаточная нефтенасышенность зависит от межфазного натяжения и отношения вязкости нефти и воды Чем больше межфазное натяжение и вязкость нефти, тем больше и вели­чина остаточной нефтенасыщенности Механизм уменьшения остаточной нефтенасыщенности с ростом температуры мо­жет быть объяснен следующим образом Когда порода гид­рофильна, т.е. смачивается водой лучше, чем нефтью, меж­фазное натяжение системы нефть - вода является единствен­ным параметром, определяющим взаимодействие фаз Если же порода лучше смачивается нефтью, чем водой, г с она гидрофобна, то при росте температуры увеличивается де­сорбция компонентов нефти, ранее адсорбированных на по­верхности породы В обоих случаях это приводит к сниже­нию остаточной нефтенасыщенности.

Снижение отношения вязкостей и остаточной нефтена­сыщенности, замедляют скорость распространения фронта воды, тем самым увеличивается добыча нефти за безводный период При вытеснении маловязкой нефги основной эффект от теплового воздействия достигается за счет термическою расширения, т.к. в этом случае ц „ очень слабо зависит от температуры

С ростом температуры вязкость тяжелой нефти резко па­дает и смачиваемость стенок пор сильно влияет на вытесне­ние нефти, а роль теплового расширения значительно мень­ше на эффективность процесса

Вытеснение нефти паром - наиболее распространенный метод увеличения нефтеотдачи пластов, так как при вытеснении высоко­вязких нефтей он обладает явными преимуществами перед дру­гими методами.

Механизм процесса.

В этом процессе пар нагнетают с поверхности в пласты с низкой температурой и высокой вяз­костью нефти через специальные паронагнетательные скважины, расположенные внутри контура нефтеносности. Пар, обладающий большой теплоемкостью — более 5000 кДж/кг — в 3—3,5 раза выше горячей воды при 230 °С, вносит в пласт значительное коли­чество тепловой энергии, которая расходуется на нагрев пласта и снижение относительной проницаемости, вязкости и расширение всех насыщающих пласт агентов — нефти, воды, газа. В пласте образуются три следующие зоны, различающиеся по температуре, насыщению и характеру вытеснения (рис. 3).

Р ис. 3. Распределение температуры Т и насыщенности 5 по длине однород­ного образца L при вытеснении нефти паром.

Зона: / — дистилляции нефти; // — конден­сации легких фракций нефти и пара; ///— конвективного прогрева пласта и объемного расширения нефти

1. Зона пара вокруг нагнетательной скважины с температурой, изменяющейся от температуры пара до температуры начала кон­денсации (400-200 °С), в которой происходят экстракция из нефти легких фракций (дистилляция нефти) и перенос (вытеснение) их паром по пласту, т. е. совместная фильтрация пара и легких фрак­ций нефти.

2. Зона горячего конденсата, в которой температура изменяется от температуры начала конденсации (200 °С) до пластовой, а горя­чий конденсат (вода) в неизотермических условиях вытесняет лег­кие фракции и нефть.

3. Зона с начальной пластовой температурой, не охваченная тепловым воздействием, в которой происходит вытеснение нефти пластовой водой.

Зоны пара и горячего конденсата по мере продолжения про­цесса расширяются, а третья зона с начальной пластовой темпера­турой сокращается. В конечном счете, зона горячего конденсата, а затем и зона пара могут достигнуть добывающих скважин. Тогда горячая вода и пар прорываются в скважины и извлекаются с нефтью на поверхность. После этого продолжение процесса на­гнетания пара практически нецелесообразно.

При нагреве пласта происходят дистилляция нефти, снижение вязкости и объемное расширение всех пластовых агентов, измене­ние фазовых проницаемостей, смачиваемости пласта и подвижностей нефти и воды и др.

Основную долю эффекта вытеснения нефти (40-50 %) обеспе­чивает снижение вязкости нефти, затем - дистилляция нефти и изменение подвижностей (по 18-20 % ) и в меньшей мере - расши­рение нефти и смачиваемость пласта.

Технология и система разработки.

Продвижение по пласту зон пара и горячего конденсата сопровождается потерями, уходом теплоты из нефтяного пласта в окружающие породы, кото­рые пропорциональны температуре этих зон на границе с окру­жающими породами, температуре на поверхности контакта с ними, продолжительности контакта и др.

При малой толщине нефтяного пласта на границе с окружаю­щими породами всегда будет высокая температура, относительная поверхность теплообмена (по отношению к объему пласта) также будет очень большой, вследствие чего при больших расстояниях между скважинами применение пара, как правило, неэффективно. Поэтому для оптимальной технологии и систем вытеснения нефти паром характерно то, что способствует сокращению потерь теплоты и достижению более полного и равномерного прогрева всего объема залежей.

С этой целью для этого метода выбирают нефтяные пласты с достаточно большой толщиной (15 м и более), вскрывают их в нагнетательных скважинах в средней части, системы размещения скважин принимают площадные с плотностью сетки от 1-2 до 4-8 га/скв, обеспечивает максимально высокий темп нагнетания пара с чередующейся закачкой пара и воды, после достаточного прогрева пластов переходят на их заводнение и др.

К недостаткам метода вытеснения нефти паром следует прежде всего отнести необходимость применения высококачественной чистой воды для парогенераторов, чтобы получить пар с насыщенностью 80% и теплоемкостью 5000 кДж/кг. В воде, питающей парогенератор, должно содержаться менее 0,005 мг/л твердых взвешенных частиц и полностью должны отсутствовать органические вещества (нефть, соли), растворенный газ (особенно кислород), а также катионы магния и кальция (нулевая жесткость).

Паротепловые обработки призабойных зон скважин и закачка в пласт теплоносителя. Являются наиболее широко применяемыми методами добычи тяжелых нефтей и природных битумов.

Процесс паротепловой обработки призабойной зоны скважины заключается в периодической закачке пара через НКТ в добывающие скважины для разогрева призабойной зоны пласта и снижения в ней вязкости нефти, т.е. для повышения продуктивности скважин. Цикл (нагнетание пара, выдержка, добыча) повторяется несколько раз на протяжении стадии разработки месторождения. Такой метод называется циклическим.

Основные достоинства – высокий дебит после обработки, меньшие потери тепла по стволу скважины в кровлю и подошву пласта, температура обсадной колонны при нагнетании пара ниже, чем при других вариантах.

Недостатки – падение дебита при последующих циклах, неполное извлечение нефти из пласта, ограниченность зоны прогрева пласта и др.

Существует циркуляционный вариант, при котором пар нагнетают по кольцевому пространству к забою, оборудованному пакером, а через НКТ откачивают конденсат вместе с нефтью. Для этого варианта необходим мощный, однородный пласт, хорошо проницаемый в вертикальном направлении.

Преимущество: эксплуатация скважины не прекращается.

Недостатки: большие потери тепла, высокая температура обсадной колонны и необходимость её защиты от деформации, ограниченность прогрева пласта, необходимость создания специальных пакеров и скважинных насосов для работы при высоких температурах.

Площадной вариант – пар подают в нагнетательную скважину, а нефть, вытесняемая из пласта оторочкой горячего пароконденсата и пара, добывается из соседних добывающих. Идет процесс непрерывного фронтального вытеснения нефти из пласта.

65. Технология и механизм извлечения нефти из недр с использованием внутрипластового горения. Что необходимо для поддержания процесса горения.

Создание подвижного фронта горения непосредственно в пласте сокращает потери теплоты и поднимает эффективность теплового воздействия. В пористой среде, насыщенной частично коксоподобными остатками нефти, возможно непрерывное горение при подаче в пласт воздуха в необходимых количествах.

Метод извлечения нефти с помощью внутрипластового горения основан на способности углеводородов (нефти) в пласте вступать с кислородом воздуха в окислительную реакцию, сопровождающуюся выделением большого количества теплоты. Он отличается от горения на поверхности. Генерирование теплоты непосредственно в пласте – основное преимущество данного метода.

Процесс горения нефти в пласте начинается вблизи забоя нагнетательной скважины, обычно нагревом и нагнетанием воздуха. Теплоту, которую необходимо подводить в пласт для начала горения, получают при помощи забойного электронагревателя, газовой горелки или окислительных реакций.

После создания очага горения у забоя скважин непрерывное нагнетание воздуха в пласт и отвод от очага (фронта) продуктов горения (N2 , CO2 и др.) обеспечивают поддержание процесса внутрипластового горения и перемещение по пласту фронта вытеснения нефти.

В результате горения в пласте происходит термическая перегонка нефти и унос продуктов разложения в зону перед фронтом горения. Коксоподобные остатки термической перегонки нефти в пористой среде и являются топливом, которое поддерживает очаг горения. Зона горения перемещается от стенок нагнетательной скважины в радиальном направлении. Образующиеся горячие газы проталкивают нефть и воду к добывающим скважинам. В результате процесса сгорают наиболее тяжелые фракции нефти.

В результате создания теплового фронта, температура которого достигает 450 - 500°С, происходит следующее:

1. Переход в газовую фазу некоторых (наиболее легких) компонентов нефти, насыщающей породу перед фронтом горения.

2. Расщепление (крекинг) некоторых углеводородов, составляющих нефть.

3. Горение коксоподобного остатка, образовавшегося в результате крекинг-процесса.

4. Плавление парафинов и асфальтенов в порах породы.

5. Переход в паровую фазу пластовой воды, находящейся перед фронтом.

6. Уменьшение вязкости нефти перед фронтом в результате ее нагревания и смешивания с легкими фракциями нефти, переносимыми потоком газов от фронта горения.

7. Конденсация продуктов перегонки нефти и образование подвижной зоны повышенной нефтенасыщенности перед фронтом горения по мере снижения температур.

Образование сухой выгоревшей массы пористой породы часто с разрушенными связями между твердыми частицами вследствие термического воздействия за фронтом горения.

Рис. 1. Схема внутрипластового горения:

1 - нагнетательная скважина (воздух); 2 - добывающая скважина; 3 - распределение нефтенасыщенности; 4 - распределение водонасыщенности;

5 - распределение температуры.

При внутрипластовом горении в пласте формируется несколько зон:

I. Выгоревшая зона со следами несгоревшей нефти или кокса, в которой закачанный воздух нагревается теплотой, оставшейся в этой зоне после прохождения фронта горения.

II. Зона горения, в которой максимальная температура достигает 300 - 500 °С. Теплота в этой зоне передается главным образом за счет конвекции.

III. Зона испарения, в которой происходит разгонка нефти на фракции и крекинг остаточной нефти в результате ее нагрева горячими газами, поступающими из зоны горения. Пластовая и связанная воды в этой зоне превращаются в пар сухой или влажный в зависимости от температуры и давления в пласте.

IV. Зона конденсации, в которой происходит конденсация углеводородов и паров воды вследствие понижения температуры. Нефть и вода проталкиваются к добывающим скважинам несконденсировавшимися газами и газами, образовавшимися в результате горения, такими как С02, СО и N2.

V. Зона увеличенной водонасыщенности, содержащая все три компонента - нефть, воду и газы.

VI. Зона увеличенной нефтенасыщенности, образующаяся в результате перемещения нефти из предыдущих зон и содержащая маловязкую нефть, вследствие обогащения ее легкими фракциями углеводородов. Температура в этой зоне близка к первоначальной.

VII. Невозмущенная зона, в которой пластовая температура практически остается первоначальной, а поэтому и вязкость вытесняемой нефти низкой.

Горение в пласте происходит в результате выгорания коксоподобного остатка, крекинга и разгонки нефти, на что расходуется от 5 до 15% запасов пластовой нефти. Это количество зависит от пластовых параметров, химического состава нефти и других факторов. Экспериментально определяется количество коксового остатка на единицу объема пласта. Затем расчетным путем или также экспериментально определяется количество окислителя (воздуха), необходимого для сжигания единицы массы коксового остатка. Причем считается, что не весь кислород воздуха используется на процесс, а только часть. Это учитывают введением коэффициента использования воздуха, равного 0,8 - 0,9. По мере расширения фронта горения в пласте количество нагнетаемого воздуха соответственно должно увеличиваться.

Горение коксоподобного остатка нефти происходит при температуре около 375 °С. Для поддержания такой температуры, а, следовательно, непрерывного горения необходимо сжечь от 20 до 40 кг кокса на 1 м3 породы. Такое количество кокса могут дать только тяжелые нефти с относительной плотностью выше 0,870. Легкие нефти не дают нужного для процесса количества коксоподобного остатка. С другой стороны, очень тяжелые нефти, с относительной плотностью свыше 1, также приводят к неэффективности процесса, поскольку в этом случае содержание кокса в нефти чрезмерно велико и объем вытесняемой нефти может оказаться незначительным.

Для сжигания 1 кг кокса требуется примерно 11,3 м3 воздуха при 100%-ном использовании кислорода воздуха. Однако для расчетов принимают коэффициент использования от 70 до 90 %. Таким образом, для обеспечения процесса горения на 1 м3 породы, содержащей от 20 до 40 кг кокса, потребуется примерно от 325 до 500 м3 воздуха.

Воспламенение кокса в пласте происходит либо принудительно, либо самопроизвольно. Так, например, на залежи нефти Павлова Гора на одном участке фронт горения был создан самопроизвольно после прокачки около 600 тыс. м3 воздуха в течение 66 суток (около 4-х месяцев с учетом перерывов). Для ускорения процесса на другом участке инициирование горения в пласте было осуществлено с помощью забойной газовой горелки в течение 54 ч. За это время на забое было введено около 25 млн. кДж теплоты. Для розжига пласта используются также забойные электронагреватели и зажигательные химические смеси. Дальнейшее поддержание горения осуществляется закачкой необходимого количества окислителя - воздуха.

Различают два процесса внутрипластового горения:

  • Прямоточный.

  • Противоточный.

При прямоточном процессе очаг горения перемещается по пласту в направлении нагнетаемого воздуха, т.е. от нагнетательной скважины к окружающим эксплуатационным. В этом случае пласт разжигается со стороны нагнетательной скважины. Считается, что прямоточный процесс горения эффективен при сравнительно легких нефтях. Нефть вытесняется по всему пласту впереди фронта горения при температурах, близких к пластовой, что является недостатком.

При противоточном процессе очаг горения перемещается по пласту в направлении, противоположном нагнетаемому воздуху, т. е. от эксплуатационных скважин к нагнетательной. В этом случае нефть разжигается на забоях эксплуатационных скважин при последующей подаче окислителя через центральную нагнетательную скважину. При этом прогретая зона остается не за фронтом горения, как при прямоточном процессе, а перед ним, что способствует более эффективному вытеснению нефти.

Кроме того, различают сухое и влажное и сверхвлажное внутрипластовое горение.

  • Сухое горение осуществляется при подаче окислителя атмосферного воздуха, практически не содержащего водяных паров.

  • При влажном горении на 1 м3 воздуха добавляется около 1 л воды.

  • При сверхвлажном горении содержание воды доводится до 5 л.

Учитывая, что при генерации пара в зоне внутрипластового очага горения при испарении связанной воды пар способствует наиболее полному вытеснению нефти из плохо проницаемых зон, предложено в нагнетаемый воздух добавлять некоторое количество распыленной влаги для генерации пара в зоне горения.

При избытке кокса и при малом количестве связанной воды такое мероприятие может привести к некоторому понижению температуры в зоне горения и переносу теплоты в зону, расположенную впереди фронта горения, за счет испарения воды и последующей ее конденсации. Кроме того, добавление некоторого количества воды снижает удельный расход воздуха, а, следовательно, и мощности компрессорной станции. Имеются данные, указывающие, что при влажном горении удается снизить удельный расход воздуха в 1,5 - 3 раза.

Контроль за процессом горения в пласте осуществляется как с помощью измерения температур на забоях добывающих и специальных наблюдательных скважин, так и путем анализа выходящих газов, главным образом на содержание в них CO2.

66. Метод сухого горения, технология метода. Недостатки этого метода.

Сухое внутрипластовое горение.

СВГ – это обычное внутрипластовое прямоточное горение, в котором в нагнетательные скважины после инициирования горения для его поддержания закачивается только воздух. Расход воздуха на 1 т добываемой нефти, по данным практики, колеблется от 400 до 3000 м3.

В случае обычного (сухого) внутрипластового горения, осуществленного нагнетанием в пласт только воздуха, вследствие его низкой теплоемкости по сравнению с породой пласта происходит отставание фронта нагревания породы от перемещающегося фронта горения. В результате этого основная доля генерируемой в пласте теплоты (до 80% и более) остается позади фронта горения, практически не используется и в значительной мере рассеивается в окружающие породы. Эта теплота оказывает некоторое положительное влияние на процесс последующего вытеснения нефти водой из неохваченных горением смежных частей пласта.

Эффективность сухого внутрипластового горения относительно невысока. В зону перед фронтом горения ввиду низкой теплоёмкости воздуха переносится менее 20% генерируемого тепла.

67. Метод влажного горения , технология метода. Применяется ли этот метод на наших месторождениях.

Влажное внутрипластовое горение.

ВВГ – это разновидность внутрипластового горения, позволяющего интенсифицировать разработку месторождений с высоковязкими нефтями, увеличивая конечную нефтеотдачу. При этом в нагнетательные скважины после создания устойчивого очага горения вместе с воздухом или попеременно закачивают (в определенном соотношении) воду. При этом вода, контактируя с нагретой породой, испаряется. Пар. увлекаемый потоком воздуха (газа), переносит тепло в область, находящуюся впереди фронта горения. Вследствие высокой теплоемкости воды, скорость конвективного переноса теплоты водовоздушной смесью возрастает, потери теплоты позади фронта горения сокращаются, количество необходимого воздуха на осуществление процесса снижается в 2-3 раза по сравнению с сухим процессом горения.

Диапазон соотношений закачиваемых в пласт объемов воды и воздуха составляет примерно 1-5 м3 воды на 1000 м3 воздуха, т.е. водовоздушное отношение должно составлять порядка (1:5)∙10-3 м3/м3.

Сверхвлажное внутрипластовое горение.

СВВГ – Процесс является разновидностью внутрипластового горения, осуществляемого при увеличении водовоздушного соотношения в закачиваемой смеси воды и воздуха или в сочетании с заводнением. При этом тепловая энергия, выделяемая при горении остаточного топлива в пласте, становится недостаточной для испарения всей массы закачиваемой воды. В этом случае исчезает зона перегретого пара, и температура в зоне реакции существенно снижается. Процесс высокотемпературного окисления (горения) переходит в процесс низкотемпературного окисления остаточного топлива.

По данным ВНИИ, при сверхвлажном горении водовоздушное отношение (ВВО) достигает 0,002-0,01 м3/м3. При максимальном значении ВВО коэффициент использования кислорода резко снижается, диффузионный режим может перейти в кинетический, и тепловыделение может быть недостаточным для поддержания горения. Различают два основных типа реакций окисления: высокотемпературное горение и жидкофазное окисление.

При сверхвлажном горении утилизация кислорода улучшается, а коэффициент использования топлива при достаточно высоком ВВО становится меньше единицы, что связано с увеличением роли конвективного потока воды в процессе. Процесс СВВГ протекает при температуре 200-250°С в отличие от влажного и сухого горения, когда температура достигает 400-600°С и соответствует температура насыщенного водяного пара. А скорость перемещения зоны генерации тепла при сверхвлажном горении пропорциональна водовоздушному фактору и определяется темпом нагнетания воды, а не воздуха. При сверхвлажном горении эта скорость возрастает в несколько раз. С увеличением ВВО снижаются расходы сгорающего топлива и воздуха.

Таким образом, процессу СВВГ характерно следующее: во всей области теплового воздействия в фильтрующемся потоке жидкости присутствует вода; экзотермические реакции, необходимые для поддержания процесса, протекают в прогретой зоне; окислительные реакции происходят в низкотемпературном режиме; полное вытеснение нефти после теплового фронта не достигается.

В случае обычного (сухого) внутрипластового горения, осуществленного нагнетанием в пласт только воздуха, вследствие его низкой теплоемкости по сравнению с породой пласта происходит отставание фронта нагревания породы от перемещающегося фронта горения. В результате этого основная доля генерируемой в пласте теплоты (до 80% и более) остается позади фронта горения, практически не используется и в значительной мере рассеивается в окружающие породы. Эта теплота оказывает некоторое положительное влияние на процесс последующего вытеснения нефти водой из неохваченных горением смежных частей пласта. Очевидно, что использование основной массы теплоты в области позади фронта горения, т. е. приближение генерированной в пласте теплоты к фронту вытеснения нефти, существенно повышает эффективность процесса.

Перемещение теплоты из задней области в переднюю относительно фронта горения возможно за счет улучшения теплопереноса в пласте добавлением к нагнетаемому воздуху агента с более высокой теплоемкостью - воды.

Процесс влажного внутрипластового горения заключается в том, что в пласт вместе с воздухом закачивается в определенном количестве вода, которая, соприкасаясь с нагретой движущимся фронтом горения породой, испаряется. Увлекаемый потоком газа пар переносит теплоту в область впереди фронта горения, где вследствие этого развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды.

Внутрипластовое парогенерирование - одна из важнейших особенностей влажного горения, в значительной мере определяющая механизм процесса вытеснения нефти из пластов. Диапазон соотношений закачиваемых в пласт объемов воды и воздуха лежит в пределах от 1 до 5 м3воды на 1000 м3 воздуха, т. е. водовоздушное отношение должно составлять порядка (1-5)-103 м33. Конкретные значения водовоздушного отношения определяются многими геолого-физическими и технологическими условиями осуществления процесса.

Повышение водовоздушного отношения до некоторого предела приводит к прекращению окислительных процессов нефти в пласте, но при меньших значениях снижает температуру, расход топлива и расширяет фронт горения. Занижение водовоздушного отношения приводит к сужению фронта, повышению температуры горения и снижению эффективности теплового воздействия на пласт и извлечения нефти. Процесс влажного горения целесообразно проводить с максимально возможными значениями водовоздушного отношения.

Эффективность и управляемость метода внутрипластового горения можно существенно повысить, добавляя к нагнетаемой водовоздушной смеси определенные агенты, катализаторы, добавочное топливо (жидкое или газообразное), изменяя режим и ситемы нагнетания рабочих агентов (воды и воздуха) в пласт (циклическое воздействие) с целью сокращения удельного расхода воздуха и повышения теплового воздействия на пласт.

При повышенных водовоздушных отношениях метод влажного горения переходит в другие модификации внутрипластового горения с заводнением. Фронт горения может прекратить существование, а закачиваемый кислород воздуха будет поступать в зону насыщенного пара, вступать в экзотермические реакции с нефтью и поддерживать так называемое сверхвлажное горение.

При сверхвлажном горении достигаются существенная интенсификация теплового воздействия на пласт, а также значительное сокращение затрат воздуха на добычу нефти. Для поддержания сверхвлажного горения требуются небольшие затраты топлива (5-10 кг на 1 м3 пласта), что имеет важное значение для пластов, содержащих маловязкую нефть.

Недостатком при реализации влажного внутрипластового горения в малопроницаемых пластах является необходимость бурения нагнетательных скважин-дублеров для раздельного нагнетания воздуха и воды, так как при совместной их закачке резко снижается приемистость (в 4-10 раз).

Для улучшения процесса передачи тепла одновременно (попеременно) с воздухом в скважину закачивается вода. Последняя, испаряясь в выжженной зоне, попадает в область впереди фронта горения и образует там зоны насыщенного пара и сконденсированной горячей воды.

При увеличении объёмов закачиваемой воды процесс горения прекращается. Однако кислород нагнетаемого воздуха в зоне насыщенного пара вступает с нефтью в экзотермические реакции (внутрипластовое горение с частичным гашением, или сверхвлажное внутрипластовое горение). При этом скорость движения зоны генерации тепла (температура главным образом 200-300°С) определяется в основном темпами закачки воды и значительно выше скорости движения фронта горения при сухом и влажном внутрипластовом горении. Процессы внутрипластового парообразования при влажном и сверхвлажном внутрипластовом горении способствуют интенсификации теплового воздействия на пласт, приводят к сокращению затрат сжатого воздуха на добычу нефти.

Механизм теплового способа разработки на основе внутрипластового горения, кроме вытеснения нефти водяным паром, горячими газами горения, водой, водогазовыми смесями и др., включает действие кислородсодержащих компонентов как поверхностно-активных веществ, испаряющихся лёгких фракций нефти. На нефтеотдачу (в среднем 50-70%) могут влиять физико-химические превращения самой породы-коллектора.

Благоприятные геолого-физические условия применения внутрипластового горения:

вязкость нефти более 10-2 Па • с,

толщина пласта свыше 3 м, глубина залегания до 2 км,

проницаемость свыше 100 мД,

пористость более 18%,

нефтенасыщенность свыше 30-35%.

Системы размещения нагнетательных и добывающих скважин при внутрипластовом горении — площадные и рядные.

Недостатки внутрипластового горения связаны с необходимостью принятия мер по охране окружающей среды и утилизации продуктов горения, по предотвращению коррозии оборудования. Развитие внутрипластового горения заключается в сочетании его с другими видами воздействия на пласт, повышении эффективности отдельных элементов общего механизма вытеснения нефти с помощью теплового эффекта.

68. Преимущества тепловых методов перед другими. Объясните суть метода тепловых оторочек. Из каких соображений выбирают размер оторочки.

При современной технологии разработки нефтяных месторождений с поддержанием пластового давления путем закачки воды в пласт не обеспечивается полное извлечение геологическихзапасов нефти, вследствие чего в недрах остается свыше 50 процент, а по пластам с высоковязкой нефтью до 80-85 нефти от геологических запасов. В связи с тем, что число вводимых в разработку месторождений со сложными горно-геологическими условиями и с высоковязкой нефтью все время увеличивается, наметилась тенденция снижения среднего коэффициента нефтеотдачи по отрасли.

Особое место тепловых методов воздействия на пласт обусловлено тем, что для их реализации используются широко доступные агенты - вода и воздух, и масштабы внедрения этих методов не зависят от возможностей получения больших количеств химических реагентов, необходимых для внедрения физико-химических методов повышения нефтеотдачи пластов.

Другими важнейшим преимуществом термических методов перед большинством физико-химических методов является возможность достижения более высокой нефтеотдачи при различных условиях залеганиянефтяных месторождений. Нередко термические методы применяют когда никаким другим методом извлечь нефть из пласта не удается.

Поэтому месторождения высоковязкой нефти - первоочередные объекты для тепловых методов. К числу таких объектов относятся прежде всего месторождения Каражанбас и Кенкияк и др.

Важнейшее средство повышения тепловой эффективности термических методов — это метод создания тепловых оторочек с последующим их перемещением другими вытесняющими агентами (например, водой).

Использование тепловых оторочек позволяет получить несколько меньшую нефтеотдачу по сравнению с этим показателем при непрерывной закачке теплоносителей в пласт. Но в таком случае на подготовку горячей воды или пара тратится значительно меньше энергии.

Метод тепловой оторочки — метод повышения нефтеотдачи продуктивного пласта, основанный на создании в нём перемещающейся зоны повышенных температур, что приводит к разжижению нефти и вытеснению её из коллектора.

Он относится к разновидности термических методов добычи нефти.

Используется при разработке месторождений тяжёлых и вязких нефтей (свыше 10-2 Па•с).

Наиболее благоприятные условия применения тепловой оторочки метода: большая толщина пласта (свыше 10 м), глубина залегания до 1000 м, высокие значения пористости (свыше 20%) и нефтенасыщенности (свыше 50%).

Тепловая оторочка создаётся закачкой в пласт теплоносителя (горячая вода, пар) через нагнетательные скважины под давлением до 16 МПа при температуре 100-350°С. Использование теплоизоляционных труб позволяет снизить потери тепла при движении теплоносителя к забою нагнетательных скважин до 2-3%, но значительная часть поступающего в пласт тепла рассеивается в породах, окружающих нефтенасыщенный коллектор. Теплопотери увеличиваются пропорционально увеличению прогретых площадей пласта.

Длительная закачка теплоносителя приводит к постепенному снижению эффективности этого метода воздействия на пласт. Может наступить такой момент, когда дополнительный объём добытой нефти окажется меньше, чем её требуется для производства теплоносителя.

Поэтому практически во всех случаях после закачки некоторого объёма теплоносителя (1-2 объёма пор нефтенасыщенного коллектора) переходят к закачке холодной воды, которая перемещает тепловую оторочку от нагнетательных скважин к добывающим. Нагнетание холодной воды ведут с максимально возможным темпом, что способствует большей сохранности тепловой оторочки.

При проектировании разработки нефтяных месторождений с применением тепловой оторочки метода наиболее важен выбор момента перехода от нагнетания теплоносителя к закачке холодной воды.

Метод тепловой оторочки используется также в комплексе с методом внутрипластового горения. Наиболее эффективен после реализации сухого внутрипластового горения, при котором значительная часть генерированного тепла остаётся в продуктивном пласте или рассеивается в окружающих породах. В последнем случае применение тепловой оторочки метода способствует существенному росту экономических показателей разработки месторождений, т.к. снижаются затраты на закачку воздуха, утилизацию газов горения и эксплуатацию скважин.

Впервые сочетание внутрипластового горения и заводнения с образованием движущейся тепловой оторочки реализовано на месторождении Ницу (Япония), где после выжигания части объёма пласта нефть вытеснялась за счёт естественного водонапорного режима.

В СССР тепловой оторочки метод впервые применён на месторождении Охинское (Сахалин), где после нагнетания в пласт пара производили закачку холодной воды. Тепловой оторочки метод используется в большинстве технологий закачки теплоносителя или внутрипластового горения как последняя завершающая стадия разработки скважинным или термошахтным способом (Ярегское, Кенкиякское и другие месторождения).

Тепловая оторочка

Создание тепловых оторочек с после­дующим их перемещением другими вытесняю­щими агентами (например, водой) является важ­нейшим средством повышения тепловой эффективности термических процессов.

Тепловая оторочка формируется в пласте на первом этапе реализации технологий паротеплового воздействия или внутрипластового горе­ния с последующим перемещением ее путем закачки ненагретой воды. Тепловая оторочка может быть очаговой (при площадном воздей­ствии) и линейной (при одно- и многорядных системах размещения скважин), она позволяет повысить экономический эффект от внедрения тепловых методов за счет снижения расхода пара или воздуха.

Выбор размеров тепловых оторочек зависит прежде всего от геолого-физических параметров продуктивных пластов, темпов ввода в пласт или генерации в нем теплоты и расстояния меж­ду добывающими и нагнетательными скважи­нами. Оптимальный объем тепловой оторочки составляет 0,6—0,8 объема порового простран­ства разрабатываемого участка. С увеличением расстояния между скважинами требуемые размеры тепловой оторочки возрастают, а при редких сетках скважин технология создания теп­ловой оторочки теряет свои преимущества.

В процессе создания тепловой оторочки с последующим проталкиванием ее к забоям до­бывающих скважин закачкой ненагретой воды она может деформироваться из-за больших по­терь тепла в зоне контакта фронта ненагретой воды с прогретой частью пласта (при непоршне­вом вытеснении), за счет чего снижается про­должительность существования тепловой отороч­ки и сохранения ее размера.

Для увеличения срока существования тепловой оторочки перед нагнетанием ненагретой воды в пласт закачива­ют определенный объем раствора полимера, об­ладающего низкой теплопроводностью и высо­кой (по сравнению с водой) вязкостью, что обес­печивает ее роль теплоизолирующего экрана (уменьшающего интенсивность теплообмена в зоне отмеченного контакта и предупреждающе­го прорыва ненагретой воды по более проницае­мым зонам слоисто-неоднородного пласта). В качестве химреагентов может быть использован гидролизованный полиакрилонитрил (ГИПАН) или полиакриламид (ПАА).

Оптимальные условия применения:

— стадия разработки — желательно начальная;

— обводненность — не более 50%;

— приемистость скважин — не менее 45 т/сут.;

— плотность сетки — 2-3 га/скв.;

— концентрация рабочего агента (полимера в водном растворе 0,5%);

— объем полимерной оторочки — 10% порового объема нагретой части пласта.

69. На основании каких документов допускается разработка месторождения. В каких случаях составляется проектный документ на разработку месторождения.

Нефтяные и газонефтяные месторождения вводятся в промышленную разработку на основе технологических схем и проектов разработки. Условия и порядок ввода месторождений (залежей) определяются "Правилами разработки нефтяных и газонефтяных месторождений". Подготовленность разведанных месторождений (залежей) нефти и газа для промышленного освоения определяется степенью их геолого-промысловой изученности.

Разведанные месторождения или части месторождений нефти и газа считаются подготовленными для промышленного освоения, согласно действующим нормативным документам, при соблюдении следующих основных условий:

  • осуществлена пробная эксплуатация разведочных скважин, а при необходимости - пробная эксплуатация залежей или опытно-промышленная разработка представительных участков месторождения;

  • балансовые и извлекаемые запасы нефти, газа, конденсата и содержащихся в них компонентов, имеющих промышленное значение, утверждены ГКЗ РФ, и дана оценка перспективных ресурсов нефти, газа и конденсата. Проектирование и ввод в разработку месторождений с извлекаемыми запасами нефти до 3 млн.т и газа до 3 млрд.м3 осуществляются на базе запасов, принятых ЦКЗ-нефть Роскомнедра;

  • утвержденные балансовые запасы нефти, газа и конденсата, а также запасы содержащихся в них компонентов, используемые при составлении проектных документов на промышленную разработку, должны составлять не менее 80% категории С1 и до 20% категории С2. Возможность промышленного освоения разведанных месторождений (залежей) или частей месторождений нефти и газа при наличии запасов категории С2 более 20% устанавливается в исключительных случаях ГКЗ РФ при утверждении запасов на основе экспертизы материалов подсчета;

  • состав и свойства нефти, газа и конденсата, содержание в них компонентов, имеющих промышленное значение, особенности разработки месторождения, дебиты нефти, газа и конденсата, гидрогеологические, геокриологические и другие природные условия изучены в степени, обеспечивающей получение исходных данных для составления технологической схемы разработки месторождения;

  • в районе разведанного месторождения должны быть оценены сырьевая база строительных материалов и возможные источники хозяйственно-питьевого и технического водоснабжения, обеспечивающие удовлетворение потребностей будущих предприятий по добыче нефти и газа;

  • имеются сведения о наличии в разведочных скважинах поглощающих горизонтов, которые могут быть использованы при проведении проектно-изыскательских работ для изучения возможностей сброса промышленных и других сточных вод;

  • составлены рекомендации по разработке мероприятий по обеспечению предотвращения загрязнения окружающей среды, обеспечению безопасности проведения работ;

  • утверждены технологические проектные документы на промышленную разработку (технологическая схема или проект) и проектно- сметная документация на обустройство, предусматривающие утилизацию нефтяного газа, газового конденсата и сопутствующих ценных компонентов в случае установления их промышленного значения;

  • получена лицензия на право пользования недрами.

Технологические проектные документы на разработку нефтяных и газонефтяных месторождений составляются, как правило, специализированными организациями (НИПИ), имеющими лицензии на право проектирования, и рассматриваются в установленном порядке центральной Комиссией по разработке Минтопэнерго РФ.

Технологические проектные документы служат основой для составления проектов обоснования инвестиций и ТЭО проектов, проектов обустройства и реконструкции обустройства месторождений, технических проектов на строительство скважин, схем развития и размещения нефтегазодобывающей промышленности района, разработки годовых и перспективных прогнозов добычи нефти и газа, объемов буровых работ и капиталовложений, геолого-технических мероприятий, внедряемых на месторождении.

Проектные решения на разработку должны быть направлены на достижение максимального экономического эффекта от полного извлечения из пластов запасов нефти, газа, конденсата и содержащихся в них сопутствующих компонентов при соблюдении требований экологии, охраны недр и окружающей среды, правил ведения горных работ.

Проектирование разработки, как и разработка месторождений, носит стадийный характер. Технологическими проектными документами являются:

  • проекты пробной эксплуатации;

  • технологические схемы опытно-промышленной разработки;

  • технологические схемы разработки;

  • проекты разработки;

  • уточненные проекты разработки (доразработки);

  • анализы разработки.

В случае получения новых геологических данных, существенно меняющих представление о запасах месторождения, базовых объектах разработки, а также в связи с изменением экономических условий разработки или появлением новых эффективных технологий, в порядке исключения, могут быть составлены промежуточные технологические документы:

  • дополнения к проектам пробной эксплуатации и дополнения к технологическим схемам опытно-промышленной разработки;

  • дополнения к технологическим схемам разработки.

Проектные технологические документы на разработку месторождений и дополнения к ним рассматриваются и утверждаются ЦКР Минтопэнерго РФ , а также территориальными Комиссиями, создаваемыми по согласованию с Минтопэнерго РФ.

Пробная эксплуатация разведочных скважин реализуется по индивидуальным планам и программам в целях уточнения добывных возможностей скважин, состава и физико-химических свойств пластовых флюидов, эксплуатационной характеристики пластов.

Для месторождений, разведка которых не закончена или при отсутствии в достаточном объеме исходных данных для составления технологической схемы разработки, составляются проекты пробной эксплуатации. Проект пробной эксплуатации месторождения составляется по данным его разведки, полученным в результате исследования, опробования, испытания и пробной эксплуатации разведочных скважин. Проект пробной эксплуатации должен содержать программу работ и исследований по обоснованию дополнительных данных, необходимых для выбора технологи разработки, подсчета и экономической оценки запасов нефти, газа, конденсата и содержащихся в них ценных компонентов.

Технологические схемы опытно-промышленной разработки составляются как для объектов в целом или участков месторождений, находящихся на любой стадии промышленной разработки, так и для вновь вводимых месторождений в целях проведения промышленных испытаний новой для данных геолого-физических условий системы или технологии разработки.

Технологическая схема разработки является проектным документом, определяющим предварительную систему промышленной разработки месторождения на период его разбуривания основным эксплуатационным фондом скважин.

Технологические схемы разработки составляются по данным разведки и пробной эксплуатации.

В технологических схемах в обязательном порядке рассматриваются мероприятия по повышению коэффициента нефтеизвлечения гидродинамическими, физико-химическими, тепловыми и другими методами.

Коэффициенты нефтеизвлечения, обоснованные в технологических схемах, подлежат дальнейшему уточнению после проведения опытно- промышленных и промышленных работ и по результатам анализа разработки.

Проект разработки является основным документом, по которому осуществляется комплекс технологических и технических мероприятий по извлечению нефти и газа из недр, контролю над процессом разработки.

Проекты разработки составляются после завершения бурения 70% и более основного фонда скважин по результатам реализации технологических схем разработки с учетом уточненных параметров пластов. В проектах разработки предусматривается комплекс мероприятий, направленных на достижение максимально возможного экономически коэффициента нефтеизвлечения.

Уточненные проекты разработки составляются на поздней стадии разработки после извлечения основных извлекаемых (порядка 80%) запасов нефти месторождения в соответствии с периодами планирования. В уточненных проектах по результатам реализации проектов и анализа разработки предусматриваются мероприятия по интенсификации и регулированию процесса добычи нефти, по увеличению эффективности применения методов повышения нефтеизвлечения.

Анализ разработки осуществляется по разрабатываемым месторождениям в целях определения эффективности применяемой технологии разработки, выработки запасов по площади и разрезу, объектов разработки и определения мер, направленных на совершенствование систем разработки и повышение их эффективности.

При авторском надзоре контролируется реализация проектных решений и соответствие фактических технико-зкономических показателей принятым в технологичесих схемах или проектах разработки, вскрываются причины, обусловившие расхождение. Осуществляются мероприятия, направленные на достижение проектных показателей.

70. Экономические показатели разработки нефтяных месторождений и методы их определений.

При планировании развития нефтяной промышленности, а также при проектировании и анализе разработки отдельных нефтяных месторождений рассматривают затраты труда и материальных ресурсов не только в их натуральном виде, но и в денежном выражении. Полную оценку различных вариантов разработки каждого отдельного нефтяного месторождения и развития нефтяной промышленности в стране или регионе в целом можно осуществить с использованием как натуральных показателей геологоразведочных работ, разработки месторождений и добычи нефти, так и комплекса экономических и технико-экономических показателей, исчисляемых в денежных, денежно- натуральных или натуральных единицах (тенге на тонну нефти, тенге на метр проходки, тонна нефти на одного работника и т.д.).

В технологических схемах и проектах разработки нефтяных месторождений использует следующие главные экономические показатели:

1) капитальные вложения;

2) удельные капитальные вложения на добычу 1 т нефти и 1 т новой мощности;

3) текущие затраты, без затрат на амортизацию основных фондов;

4) эксплуатационные затраты, включая затраты на амортизацию основных фондов;

5) себестоимость продукции;

6) прибыль;

7) экономический эффект;

При необходимости более детального анализа вариантов разработки нефтяных месторождений определяются также следующие показатели экономической эффективности производства:

1) производительности труда;

2) приведенные затраты;

3) фондоотдача;

При планировании развития нефтяной промышленности в стране или в регине можно использовать все показатели.

Капитальные вложения- это затраты труда и материальных ресурсов в денежном выражении на создание основных фондов нефтегазодобывающих предприятий, т.е. затраты на бурение скважин, строительство объектов промыслового транспорта нефти, сепарации углеводородов, газобензиновых заводов, установок по воздействию на пласт с целью повышения извлечения нефти и интенсификации ее добычи, электроснабжению, автоматизации производства и т.д.

Удельные капитальные вложения на каждый год разработки месторождения – отношения накопленных капитальных вложений к годовой добыче нефти.

Удельные капитальные вложения за некоторый период времени к расчетной добыче новых скважин за этот период времени.

Текущие затраты бывают двух видов. Одни зависит в основном от объема текущей добычи нефти, воды и газа, другие же определяются главным образом числом скважин. В основном от уровня добычи нефти, газа и воды зависят затраты энергии на механизированную добычу, транспорт и первичную переработку нефти. От объема текущей добычи закачки в пласт веществ с целью повышения нефтеотдачи и интенсификации добычи нефти зависит стоимость эксплуатации сооружений по воздействию на пласт.

В эксплуатационные затраты входят текущие затраты и амортизационные отчисления от стоимости основных фондов.

Для различных видов сооружений и оборудования, составляющих основные фонды, установлены нормативные сроки амортизации, в течение которых вся стоимость этих сооружений и оборудования, включая их капитальный ремонт, должна перейти в эксплуатационные затраты и в конечном счете, войти в себестоимость добываемых нефти и газа.

При расчете суммируются эксплуатационные затраты на:

1) амортизацию добывающих и нагнетательных скважин ;

2) амортизацию объектов промыслового обустройства ;

3) обслуживание скважин ;

4) энергию на механизированную добычу жидкости ;

5) воздействие на пласт с целью повышения нефтеотдачи и интенсификации добычи нефти ;

6) сбор и транспорт нефти и газа ;

7) сепарацию углеводородов, обезвоживания и обессоливание нефти ;

8) общепроизводственные расходы ;

9) отчисления на геологоразведочные работы ;

Затраты на текущий ремонт входят в затраты на обслуживания скважин .

Таким образом, годовые эксплуатационные затраты отражают сумму указанных выше видов годовых затрат.

Себестоимость нефти равна отношению годовых эксплуатационных затрат к годовой добыче нефти.

Производительность труда в нефтегазодобывающих предприятиях принято выражать в основном в двух формах: в тоннах добытой нефти или газа в единицу времени (например, за год) на одну единицу промышленно-производственного персонала и в денежных единицах, исчисляемых стоимостью валовой продукции НГДП на одну единицу промышленно-производственного персонала в единицу времени.

Фондоотдача – отношения стоимости годовой валовой продукции предприятия к среднегодовой стоимости основных фондов.

В проектных документах экономические показатели разработки нефтяных месторождений обычно тесно связаны с технологическими и техническими показателями.

Поэтому комплекс технических и экономических показателей в технологических схемах и проектах разработки нефтяных месторождений можно использовать и чисто технико-экономические показатели, такие, например, как металлоемкость и энергоемкость продукции и др. Экономические и технико-экономические показатели разработки каждого нефтяного месторождения изменяются со временем по мере выработки запасов месторождения, а также существенно зависят от применения достижений научно- технического прогресса, особенно новой технологии извлечения нефти и газа из недр.

71. Источники и методы получения исходных данных для составления проектных документов по разработке нефтяных месторождений.

От качества и полноты геол- промыс инф-и, полученной на стадии поисково-развед-х работ и пробной эксплуат-и скв зависит:

- достоверность подсчетных параметров

- обоснованность запасов

- выбор и обоснование системы разр-ки

- проектирование уровня годовой добычи

- достижение max коэф-в нефте– и газоотдачи.

В геологической части проектных документов входят:

1. графический комплекс карт и схем, кот-й включает свободный или типовой геолого-геофизич-й разрез, структурные карты по кровле и подошве пласта, геол профили, карты общих эффективных и нефтенасыщенных толщин, схемы корреляций, схемы опробывания, карты неоднородности.

2. цифровые данные, характеризующие по скв пористость, проницаемость, нефтегазоносность разрезов, физ.хим св-ва пластовых флюидов, данные о нефтегазонасыщенных толщинах в скв, термобарические условия залежей, размеры залежей, балансовые и извлекаемые запасы.

3. кривые, хар-е зависимости м/д различными геол-промыс параметрами, в частности зависимость св-в пластовых флюидов от давления и температуры. Это необходимо чтобы знать как будут меняться св-ва н и г в зависимости от разр-ки. Зависимость пористости от проницаемости, зависимость фазовой проницаемости от нефтегазонасыщенности и др.

4. текстовая часть геологических данных включает физико-геолграфический очерк по мест-ю, историю геолого-геофизической изученности, стратиграфию, тектонику, гефтегазоносность, гидрогеологию и геокриологию. В заключении этой части делают выводы о режиме залежи, для этого в процессе пробной эксплуатации проводят регулярные исследования пластовых по опорной сети скв (в пределах залежи и в законтурной зоне), изучают закономерности снижения Рпл в зависимости от добычи н для того чтобы решить вопрос как проектировать систему разработки с использованием пластовой энергии или ППД.

Недостатки геологических документов при составлении проектов разработки.

Они могут быть связана:

1. с низким выносом керна и несоблюдением технологий бурения

2. с неполным объемом ГИС или с низкой информативностью геофизических материалов. Это может быть обусловлено некачественным бурением и задавливанием пласта, когда формируется глубокая зона проникновения бурового раствора, а также большим перерывом м/д вскрытием пласта бурением и проведением ГИС. Измениться характер насыщения, когда бур. раствор оттеняет пластовые флюиды и продуктивные интервалы могут характеризоваться как водонасыщенные или с неясным характером насыщения.

3. низкое качество опробывания и испытание скв. Опробование проводят опробователями на каротажном кабеле или пластоиспытателями, спускаемыми на бурильных трубах в процессе бурения скв. При опробовании получают качественную характеристику пласта, т.е. характер насыщения пласта и ориентировочно дебит. При испытании получают количественную характеристику пласта и записывают КВД, что позволяет определить коэф продуктивности, гидропроводности, характеристику состояния ПЗП, т.е. снижена проницаемость в ней или нет, что характеризуется показателем скин-эффекта. Испытания проводят в открытом стволе пластоиспытателями, когда изолируют интервал испытания пакером или в обсаженных скв после проведения перфорации, вызова притока и проведении гидродинамических исследований. В процессе проведения опробований и испытаний отбирают глубинные пробы для определения подсчетных параметров и показателей для составления проектов разработки (Гф, Рнас и др). на практике часто испытывают одновременно несколько пластов по этому трудности связаны с определением приточного интервала.

4. неудовлетворительной изученностью гидрогеологии и гидродинамики месторождения. Для этого проводят гидродинамические исследования в пределах залежи и в законтурной зоне, строят карты изобар, в добывающих скважинах на устье отбирают пробы нефти. Отбирают % воды для определения активности водонапорной системы и установления режима залежи. По этим исследованиям рекомендуют систему разработки с использованием Рпл или с ППД. Неудовлетворительное качество геологических материалов может быть выявлено при утверждении запасов в ГКЗ когда рассматривают подсчет запасов и экспертное заключение. В случае отрицательного заключения может быть рекомендовано дополнительное бурение скв, увеличение отборов керна, глубинных проб, раздельного испытания продуктивных пластов для уточнения подсчетных параметров и показателей для составления проектов разработки. Для этого может быть рекомендовано опережающее бурение добывающих скв, в которых выполняется рекомендуемый комплекс работ.

Для каждого месторождения по результатам поисково-разведочных работ и пробной эксплуатации скважин должны быть получены следующие данные:

1.Размеры и форма залежи, положения тектонических нарушений, их амплитуда, границы выклинивания и замещения продуктивных пластов непроницаемыми породами, т е наличие экранов литологических, стратиграфических, тектонических.

2.Закономерности изменения литологии, коллекторских свойств, общих, эффективных и газонасыщенных толщин, изучение неоднородности по схемам корреляции и схемам неоднородности.

3.Критерии оценки продуктивных пластов и нижние пределы коллекторских свойств для определения кондиционных значений, т е при каких показателях они имеют промышленное значение.

4.Дебиты нефти, газа, воды, начальное Рпл, Рнас, газовые факторы, коэффициенты продуктивности скважин и их изменение во времени.

5.Качество нефти, газа, конденсата, воды, их состав и свойства, зависимость свойств от давления и температуры, наличие в флюидах сопутствующих компонентов, в нефтях, Ni, Mn, S, F, цезий, ванадий и др, добыча которых может осуществляться в промышленных масштабах, из газа – гелий.

6.Гипсометрическое положение контактов ВНК, ГНК, ГВК и их изменение во времени, что определяют в процессе пробной эксплуатации, а также установление режима залежи по опорной сети скважин, которые равномерно охватывают залежь и законтурную зону.

7.Гидродинамическая связь отдельных продуктивных пластов, участков месторождений, блоков для обоснования системы ППД.

8.Запасы нефти, растворенного и свободного газа, конденсата.

9.Условия для эффективной промышленной разработки месторождения, т е состояние пластовой энергии для выбора системы разработки.

72. Критерий оптимальной разработки отдельного нефтяного месторождения.

Нефтяное месторождение – множество добывающих и нагнетательных скважин вместе с разрабатываемыми нефтяными пластами – представляет собой большую сложную систему.

При исследовании больших сложных систем надо учитывать, что имеющиеся совокупности значений обычно бывают лишь небольшими частями полных совокупностей. Поэтому необходимо проверить представительность имеющихся совокупностей. Также необходимо учитывать ограниченность этих совокупностей и, с целью обеспечения надежности функционирования всей системы и всех ее основных звеньев, вводить коэффициенты запаса прочности, понижающие средние значения.

Операции со многими неоднородными совокупностями значений выполняют с их двумя-тремя параметрами по строгим математическим правилам, именуемым в целом алгеброй неоднородности. Применение такой математической идеологии позволяет, с одной стороны, учитывать достаточно большое – практически неограниченное большое число факторов, влияющих на процесс добычи нефти и на неравномерность вытеснения нефти агентом, с другой – устанавливая точно или приближенно (с удовлетворительной точностью) взаимную независимость действия различных факторов, радикально упрощать получение общего решения. Более того, общее решение удается получить в аналитическом виде и оно в явной форме учитывает действие всех основных факторов. Это аналитическое решение, называемое уравнениями разработки нефтяной залежи, обладает контролируемой точностью и неприменимо за пределами области удовлетворительной точности.

Уравнения, базирующиеся на сплайн-функциях первой степени, имеют довольно общий вид и способны математически описать любую фактически наблюдающуюся динамику добычи нефти и других технологических показателей нефтяной залежи. Использование этих уравнений должно быть обязательным как при анализе, так и при проектировании разработки нефтяных залежей; использование должно быть совместным, так как добыча нефти зависит не только от числа пробуренных скважин, но и от пропускной способности промыслового хозяйства и объема закачки вытесняющего агента.

Чтобы оттенить эффективность системной оптимизации, можно привести примеры неудачной несистемной оптимизации: когда с целью увеличения добычи нефти увеличивали общее число скважин, однако получали наоборот снижение текущей добычи; когда с благим намерением проводили форсированный отбор жидкости, но не учитывали ограниченную, хотя и большую, пропускную способность промыслового хозяйства и получали снижение текущей добычи; когда с желанием увеличить дебиты нефти, уменьшали забойные давления добывающих скважин ниже давления насыщения нефти газом, но из-за высокого содержания парафина после кратковременного повышения получали устойчивое долговременное снижение дебита нефти и увеличение обводненности.

Изменение того или иного фактора редко дает только положительные эффекты, обычно дает целый спектр больших и малых положительных и отрицательных эффектов. Поэтому требуется определить общий результирующий эффект и судить по нему.

Инструментом оптимизации служат уравнения разработки нефтяной залежи вместе с критериями локальной и глобальной оптимальности. Но обязательным средством оптимизации является информация. Положительное свойство уравнений – их восприимчивость к обычной промысловой информации о работе и исследованиях скважин. По этой информации с помощью уравнений решают серию обратных задач и устанавливают основные параметры нефтяных пластов – их продуктивность, неоднородность, разрабатываемые извлекаемые запасы нефти и жидкости, коэффициент различия физических свойств нефти и вытесняющего агента, долговечность скважин.

На крупной нефтяной залежи обязательной составной частью оптимизации извлечения запасов нефти должен быть скоростной промысловый эксперимент на небольшом участке с густой сеткой скважин по ускоренному опробованию запроектированной технологии.

В дальнейшим в процессе разработки нефтяной залежи необходимо тщательно анализировать работу скважин – по участкам и пластам вести оперативную разведку полноты выработки запасов нефти.

При системной оптимизации разработки нефтяного месторождения надо соблюдать определенный порядок (определенную последовательность) и учитывать взаимную независимость действия факторов.

1. Прежде всего необходимо выбрать геометрию сетки скважин. В условиях зонально неоднородных и прерывистых пластов, если в изменяемости коллекторских свойств отсутствует анизотропия (односторонняя направленность) либо возможная анизотропия остается еще неизвестной, то лучшей является равномерная сетка.

А если может потребоваться оперативное разрежение сетки скважин на периферии месторождения или сгущение в его центре, а также сложение нескольких сеток скважин в одну или, напротив, разложение одной сетки на несколько при максимально возможном сохранении равномерности, то лучшей будет равномерная квадратная сетка скважин.

2. Далее надо выбрать схему размещения нагнетательных скважин. При выборе надо учесть площадь нефтяных пластов, их зональную неоднородность и прерывистость, наличие тектонических нарушений, расположение газонефтяных и водонефтяных контуров. При большой нефтеносной площади господствующим является внутриконтурное заводнение, а дополнительным приконтурное. В сложных условиях лучшим будет внутриконтурное площадное заводнение. Причем во многих случаях лучше обращенная 9-точечная схема с тремя добывающими скважинами на одну нагнетательную, а в первый период нагнетательных может быть вдвое меньше – одна на семь добывающих.

Для этой схемы заводнения проектируют промысловое обустройство. От этого площадного заводнения довольно легко перейти к рассредоточенному избирательному.

Существует много модификаций избирательного заводнения. Их общая черта – решение о включении под нагнетание той или иной скважины принимают после ее бурения и исследования, когда выявляют геологическое строение пластов в зоне этой скважины. Под закачку воды могут выбирать скважины в зонах повышенной продуктивности пластов, эффективной толщины пластов, степени связанности с окружающими скважинами, вязкости нефти, а также скважины в местах слияния вышележащих нефтеносных и нижележащих водоносных пластов, вышележащих газоносных и нижележащих нефтеносных. Вместо избирательности нагнетательных скважин может быть избирательность добывающих – в местах максимальной концентрации запасов нефти с минимальной газоносной и водоносной толщиной. Более того, в пределах нефтяной площади вместо той или иной избирательности может быть оптимальное формирование ячеек скважин.

3. Следующий шаг – выбор забойных давлений нагнетательных и добывающих скважин. Верхний предел – ниже давления гидроразрыва пластов, нижний предел – давление насыщения нефти газом. При снижении забойного давления добывающих скважин ниже давления насыщения маловязкая нефть превращается в нефть повышенной вязкости и высоковязкую со всеми вытекающими отсюда последствиями – холостая прокачка больших объемов воды и снижение нефтеотдачи пластов.

4. Дальнейший шаг – выделение эксплуатационных объектов, каждый из которых имеет свою самостоятельную сетку добывающих и нагнетательных скважин.

5. В заключение – выбор плотности сетки скважин, определение рациональной нефтяной площади и рациональных извлекаемых запасов нефти на одну пробуренную скважину.

По п. 2 в качестве критерия может быть использован максимум начального дебита нефти на одну пробуренную скважину.

По п. 2, 3 и 4 критерием может быть максимум среднего дебита нефти на одну скважину при заданной конечной нефтеотдаче пластов или заданной нефтеотдаче за основной период эксплуатации до 80 – 90%-ной обводненности продукции скважин.

По п. 5 критерием служит максимум народнохозяйственного экономического эффекта на единицу запасов нефти.

Кроме оптимизации системы разработки нефтяного месторождения может быть оптимизация соотношения разведочного и эксплуатационного бурения, направления эксплуатационного бурения, конструкции и долговечности скважин, оптимизация перехода с режима истощения на режим вытеснения нефти з

73. Называть последовательно составляемые проектные документы по разработке нефтяных месторождений и объясните их назначение. На основании чего они составляются.

Вид и содержание проектного проектного документа по разработке зависит от стадии разработки месторождения, сложности и изученности его строения и свойств, а также предполагаемых технологий и системы разработки месторождения. Вообще могут быть использованы следующие документы:

1)Проект пробной эксплуатации

2)Технологическая схема опытно-промышленной эксплуатации

3) Технологическая схема разработки

4)Проекты разработки

5)Уточненные проекты разработки

6)Анализ разработки

В принципе каждый последующий проектный документ должен опираться на предыдущий, но не всегда необходимо последовательно составлять весь набор документов. Если предполагается ввести в разработку месторождение, залегающее в уже известном геологическом комплексе, со свойствами, аналогичными свойствам других месторождений, то можно обойтись, например, без технологической схемы опытно-промышленной эксплуатации и переходить к составлению основной технологической схемы разработки.

Пробная эксплуатация скважин осуществляется, как правило, в обязательном порядке, т.к. при ее проведении получают важные сведения о пласте и скважинах, необходимые для составления технологической схемы разработки (Дебиты, приемистость, скин-эффекты, эффективности тех или иных способов эксплуатации и др.).

В случаях, когда возникают сомнения в использовании тех или иных расстояний между скважинами, в выборе объектов разработки, или технологии извлечения нефти, необходимо составлять технологическую схему опытно-промышленной эксплуатации для одного или нескольких участков месторождения.

Технологическая схема и проект разработки месторождения являются основными документами, определяющими разработку месторождения. В тех. схеме устанавливается система и технология разработки. В процессе её реализации производится основное эксплуатационное разбуривание месторождения.

После составления и утверждения тех. схемы составляется проект его обустройства в котором с учетом многих условий устанавливаются трассы промышл. нефтепроводов и их техн. характеристики, тип и конструкция устройств для сбора и замера нефти и газа, систем управления, типы и производительность устройств для сепарации нефти и газа, и т.п. На основе проекта обустройства строительство объектов разработки.

Проект разработки составляется когда месторождение разбурено на 60-70%, но в систему и технологию ещё можно ввести изменения. Если и после составления и начала осуществления проекта разработки возникнет необходимость изменения проекта, то составляется уточненный проект разработки.

Согласно регламенту Министерства топлива и энергетики РФ проектные документы должны содержать:

*Общие физ.-геол. сведения о месторождении , его пластах и насыщающих их нефти, газе и воде.

*Геол.-физ. характеристику месторождения , строение и данные об эффективных толщинах, данные о запасах, пористости, абсолютной и относительной проницаемости, вязкости нефти, газа и воды, смачиваемости коллекторов, начальном и текущем Рпл и нефтенасыщенности.

*Данные гидродинамических исследований, данные о дебитах и приемистости скважин.

*Данные лабораторных исследований извлечения нефти из недр, теплофизические и физ.-химические свойства пластов в соответствии с предполагаемой технологией нефтеизвлечения.

*Обоснование выявления объектов разработки.

*Обоснование конструкции скважин, техники и технологии эксплуатации скважин, систем первичной переработки нефти и газа.

*Характеристику источников водоснабжения и газоснабжения.

*Обоснование экологической безопасности разработки.

*Экономические характеристики вариантов разработки.

На каждый проектный документ должно выдаваться техническое задание и показатели входящие в него не должны быть противоречивыми.

74. Какие технологические методы относятся к числу методов регулирования разработки. Каким образом регулируется процесс разработки.

На основе анализа и контроля за разработкой нефтяных и газовых месторождений выявляются расхождения между фактическими и проектными показателями разработки, что служит основой для осуществления мероприятий по приведению в соответствие фактического хода разработки с проектным. Совокупность этих мероприятий и служит регулированием разработки эксплуатационных объектов нефтяных и газовых месторождений, которое можно проводить чисто технологическими методами без изменения или с частичным изменением системы разработки. Регулирование разработки в каждом конкретном случае представляет собой сложную задачу, требующую как детального учета геологического строения объекта разработки и физико-химических свойств флюидов, так и текущего состояния разработки на момент начала регулирования.

Основная задача регулирования заключается в достижении равномерности выработки запасов углеводородов и создании таких режимов разработки, которые замедляют снижение скорости изменения фазовой проницаемости для нефти и газа. Разработка регулируется в основном с помощью гидродинамических методов.

К числу технологических методов регулирования разработки нефтяных месторождений относятся.

1. Изменение режимов эксплуатации добывающих и нагнетательных скважин путем уменьшения или увеличения их дебитов и расходов закачиваемых в пласт веществ вплоть до прекращения эксплуатации (отключения) скважин.

В скважинах эксплуатирующих неоднородные низкопроницаемые пласты, возможности применения регулирования с помощью изменения режимов довольно ограничены, так как продуктивность и дебиты скважины обратно пропорциональны неоднородности пласта. В скважинах, эксплуатирующих однородный пласт с высокой проницаемостью, с помощью режимов работы скважины можно менять дебиты в широких пределах.

2. Общее и главным образом поинтервальное воздействие на призабойную зону скважин с целью увеличения притока нефти из отдельных прослоев пласта или расхода закачиваемых в них веществ.

Технически поставленная задача может достигаться проведением дополнительной перфорации, гидропескоструйной перфорацией, дренированием пласта горизонтальными каналами и др.

3. Увеличение давления нагнетания в скважинах вплоть до давления раскрытия трещин в призабойной зоне, поинтервальная закачка рабочих агентов в прослои пласта при дифференцированном давлении нагнетания или снижение давления нагнетания вплоть до давления ниже давления насыщения, что приводит к использованию запаса энергии растворенного газа.

4. Изменение направления фильтрационных потоков в неоднородных пластах, что приводит к вытеснению нефти из тупиковых зон и полулинз. В однородных пластах изменение фильтрационных потоков, особенно вблизи нейтральных линий тока, ведет к увеличению градиентов давления и расформированию застойных зон.

5. Циклическое воздействие на пласт и направленное изменение фильтрационных потоков.

Технология циклического воздействия на пласт заключается в периодическом изменении дебитов добывающих скважин и расходов закачиваемой воды в нагнетательные скважины на каком-либо достаточно крупном участке месторождения или на месторождении в целом. Направленное изменение фильтрационных потоков проводят путем изменения режимов работы отдельных групп добывающих и нагнетательных скважин с целью ускорения продвижения водонефтяного контакта по тем линиям движения, по которым он до этого продвигался медленно, и, наоборот, замедление его перемещения в других направлениях.

Циклическое воздействие на пласт часто осуществляют путем периодического изменения режимов работы только нагнетательных скважин при постоянном режиме эксплуатации добывающих скважин для поддержания добычи жидкости на высоком уровне. При этом темп нагнетания воды в пласты всего месторождения также периодически изменяется, колеблясь около среднего проектного уровня. Периоды колебания темпа закачки в пласт воды (циклы) в зависимости от фильтрационных свойств месторождения составляют обычно от недель до месяцев.

К методам регулирования, связанным с частичным изменением системы разработки месторождений, относят следующие.

1. Очаговое и избирательное воздействие на разрабатываемые объекты путем осуществления закачки в пласт агентов через специально пробуренные нагнетательные скважины, через которые осуществляется выборочное воздействие на отдельные участки объектов.

2. Установка в скважине пакерного оборудования с целью частичного разукрупнения объектов разработки.

3. Форсированный отбор жидкости (ФОЖ). ФОЖ – один из методов регулирования разработки на поздней стадии, не требующий изменения системы разработки. Его также называют методом увеличения нефтеотдачи. При его использовании, как правило, прирост добычи нефти выше, чем прирост добычи воды. Механизм эффекта при ФОЖ объясняется преодолением капиллярных сил, вытеснением нефти из неоднородных слоистых пластов, преодолением эффекта электрокинетического торможения.

4. Проведение работ по капитальному ремонту скважин или установка в скважинах пакерного оборудования с целью частичного укрупнения или разукрупнения, т.е. изменения объектов разработки.

Каждый из названных выше методов регулирования воздействия на объект разработки в зависимости от конкретных геологических условий может, в свою очередь, реализовываться десятками различных вариантов.

75. Измерение, регистрация и анализ показателей разработки месторождений. Какие приборы применяются для выполнения этих работ.

После принятия к реализации проектного документа, определяющего разработку нефтяного месторождения, приступают к разбуриванию месторождения, его обустройству и собственно добыче нефти и газа из месторождения. Начиная с ввода месторождения в разработку до самого окончания этого процесса, не прекращают измерения (исследования) геолого-физических свойств месторождения и показателей его разработки. При этом накапливаются многочисленные сведения, позволяющие не только лучше познавать характеристики месторождения и изучать ход его разработки, но и управлять процессами извлечения нефти из недр.

Основой для изучения свойств месторождения и характера процессов его разработки служат данные количественных гидродинамических и геофизических измерений, производимых в скважинах, а также данные исследования физико-химических свойств извлекаемых из пластов и закачиваемых в них веществ. При этом проводят следующие измерения и исследования.

1. Стандартные геофизические измерения кажущегося электрического сопротивления пород и потенциала собственной поляризации в геологическом разрезе, вскрываемом скважиной, во всех вновь пробуренных скважинах.

2. Исследования при помощи испытателей пластов в разведочных скважинах и в некоторых случаях бурения эксплуатационных скважин. В большинстве скважин отбирают керн из продуктивного пласта.

3. Исследования методами установившихся отборов и закачки с целью построения индикаторных кривых в добывающих и нагнетательных скважинах. Практически все скважины должны быть исследованы методом восстановления забойного давления. При этом такие исследования повторяют через 1 - 2 года или чаще, если происходит воздействие на призабойную зону скважин. Замеры забойного и пластового давлений без снятия. индикаторных кривых и кривых восстановления давления производят в среднем один раз в полгода.

В процессе разработки нефтяных месторождений с применением обычного заводнения осуществляют замеры температуры в скважинах примерно один раз в год. Если при заводнении нефтяных пластов используют воду с температурой ниже пластовой, что может привести к кристаллизации парафина в нефти, пластовую температуру замеряют чаще. При использовании тепловых методов разработки нефтяных месторождений, особенно в начальный период их применения, можно проводить ежемесячные или еще более частые замеры температуры в добывающих скважинах.

Весьма важное значение для контроля и анализа разработки нефтяных месторождений имеют измерения профилей притока и приемистости скважин глубинными дебитометрами и расходомерами. Периодичность проведения таких исследований в каждой скважине составляет от полгода до одного года. В необходимых случаях эти измерения можно проводить с большей частотой.

Перед составлением технологических схем и проектов разработки в значительном числе скважин, расположенных на различных участках месторождения, отбирают глубинные пробы добываемой продукции. В отдельных скважинах такие отборы повторяют примерно через год. В тех особых случаях, когда, например, анализ глубинных проб нефти и воды позволяет судить о перемещении водонефтяного контакта или осаждении парафина в пористой среде, пробы отбирают чаще.

Обязательны замеры дебитов нефти и воды на всех скважинах. Такие замеры проводят на групповых замерных установках.

Для анализа разработки нефтяных месторождений необходимы также одновременные измерения в скважинах забойного давления, профилей притока жидкости или ее расхода, забойной температуры при помощи комплексных глубинных приборов типа «Поток».

Для определения положения водонефтяного и газонефтяного контактов в скважинах используют методы нейтронного и импульсного нейтрон-нейтронного каротажа. Такие исследования проводят в скважинах примерно один раз в полгода.

В некоторых случаях при исследованиях применяют радиоактивные изотопы (в частности, путем закачки в пласты трития), акустический каротаж, глубинное фотографирование и другие специальные виды исследований.

Все указанные измерения, проводимые в процессе разработки каждого отдельного месторождения, направлены не только на более глубокое познание самих процессов извлечения нефти, но и на дальнейшее изучение недр, и в первую очередь продуктивных пластов.

Всю информацию, включающую параметры, характеризующие пласты и скважины разрабатываемого месторождения, систему разработки, технологические, технико-экономические и экономические показатели, хранят в службах обработки информации, кустовых информационно-вычислительных центрах, имеющихся в нефтегазодобывающих управлениях и в объединениях, а также в главном информационно-вычислительном центре Минтопэнерго.

Отдельно регистрируются технологические и технические мероприятия, которые осуществляются на скважинах в процессе разработки месторождений, а также технико-экономические, экономические показатели, нормативы, плановые и другие заданные цифры.

Для хранения массивов информации о разработке нефтяных месторождений используют машинные носители информации: магнитные диски, магнитные ленты, перфокарты, перфоленты. Эти накопители информации подсоединяют к ЭВМ соответствующих информационных служб и вычислительных центров.

Программы выборки и обработки информации о разработке нефтяного месторождения предназначены для составления справок, отчетов, подготовки исходной информации, для составления проектных документов по разработке месторождений, для анализа и регулирования разработки, прогнозирования. Например, если требуется построить карту изобар на определенную дату, то соответствующая программа выбирает из всего информационного массива те данные, которые как раз и необходимы для построения этой карты.

Известны программы, позволяющие осуществить автоматические построения графиков и карт, в том числе карт изобар, при помощи графопостроителей. Если необходимо нанести на карту положения водонефтяного контакта на определенные даты, то программа осуществляет выборку из информационного массива соответствующих данных о замерах положений водо - нефтяного контакта и т. д. Однако чаще всего ЭВМ обеспечивает только выборку и распечатку исходных данных для построения отдельных зависимостей и карт, а построения осуществляют специалисты, анализирующие разработку месторождения.

В процессе анализа не только строят различные взаимосвязи показателей разработки, но и выявляют причины возникновения этих взаимосвязей, находят пути улучшения показателей разработки месторождений путем регулирования или подготовки и осуществления нового проектного решения.

Наиболее совершенная, высшая форма анализа разработки месторождения — сопоставление фактических данных о процессе с результатами математического моделирования разработки на современных ЭВМ, адаптация модели разработки к фактическим данным и выявление неизвестных особенностей геологического строения месторождения и характера протекания в нем процессов извлечения нефти.

В последнее время одним из главных направлений повышения качества проектирования, управления и контроля за разработкой нефтяных и газонефтяных месторождений стало применение компьютерных постоянно действующих геолого-технологических моделей (ПДГТМ).

При построении на базе всей совокупности имеющихся геолого-геофизических и промысловых данных постоянно действующих геолого-технологических моделей недропользователь имеет возможность отслеживать в динамике выработку остаточных запасов углеводородов, точнее прогнозировать добычу нефти и газа, моделировать геолого-технические мероприятия по повышению нефтеотдачи и эффективности работы предприятия, более обоснованно рассчитывать наиболее рациональные и экономически эффективные варианты разработки продуктивных пластов.

Решение о проведении мероприятий по регулированию разработки месторождения в этом случае наиболее обосновано.