- •В.Ф. Макаров резание материалов
- •Оглавление
- •Глава 1 Кинематика процесса резания 19
- •Глава 2 Динамика процесса резания 58
- •Глава 3 Теплофизика процесса резания 159
- •Глава 4 Износ и стойкость режущего инструмента 205
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали 286
- •Глава 6 Оптимизация процесса резания 330
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием 379
- •Введение
- •Глава 1 Кинематика процесса резания
- •1.1. Основы кинематики резания
- •1.1.1. Виды движений при резании материалов
- •1.1.2. Поверхности заготовки в процессе резания
- •1.1.3. Кинематические схемы резания
- •1.2. Геометрия режущей части инструмента
- •1.2.1. Конструкция, части и поверхности токарного резца
- •1.2.2. Геометрические параметры резца (углы заточки)
- •1.2.3. Изменения углов заточки режущих инструментов при установке и в процессе резания
- •1.2.4. Формы передней поверхности резцов
- •1.3. Классификация видов обработки резанием
- •1.4. Элементы режима резания и срезаемого слоя
- •1.4.1. Элементы режима резания
- •1.4.2. Элементы срезаемого слоя
- •Остаточное сечение среза при точении
- •Площадь поперечного сечения среза при фрезеровании
- •Основное время резания
- •Контрольные вопросы и задания
- •Глава 2 Динамика процесса резания
- •2.1. Деформация и напряжения в процессе резания
- •2.1.1. Физическая сущность процесса резания
- •Некоторые сведения о пластической деформации металла
- •2.1.2. Методы изучения и оценки пластической деформации
- •2.1.3. Методы моделирования деформаций при изучении процессов резания
- •Математические зависимости
- •2.2. Процесс стружкообразования
- •2.2.1. Типы стружек при резании пластичных и хрупких материалов
- •2.2.2. Деформированное состояние зоны стружкообразования при элементной и сливной стружке
- •2.2.3. Взаимосвязь явлений стружкообразования в процессе резания
- •2.2.4. Изменение размеров и формы стружки по сравнению со срезаемым слоем. Понятие об усадке стружки
- •2.2.5. Методы завивания и дробления сливной стружки
- •2.3. Контактные явления, трение и наростообразование при резании материалов
- •2.3.1. Контактные явления и трение на передней и задней поверхностях инструмента
- •2.3.2. Процесс наростообразования
- •2.3.3. Влияние условий обработки на высоту нароста
- •2.3.4. Положительные и отрицательные свойства нароста
- •2.3.5. Методы борьбы с наростом
- •2.4. Сила резания, работа и мощность резания
- •2.4.1. Система сил, действующих на передней и задней поверхностях инструмента
- •2.4.2. Составляющие силы резания при точении
- •2.4.3. Зависимость составляющих силы резания от условий обработки
- •2.4.4. Влияние геометрических параметров резца на составляющие силы резания
- •2.4.5. Влияние степени затупления резца и смазочно-охлаждающих жидкостей на составляющие силы резания
- •2.4.6. Методы определения сил резания
- •2.4.7. Вибрации и шум при обработке резанием
- •Особенности применяемых систем вибродиагностики
- •2.4.8. Эмпирические формулы для расчета составляющих силы резания
- •2.4.9. Работа и мощность резания
- •2.5. Контрольные вопросы и задания
- •Глава 3 Теплофизика процесса резания
- •3.1. Температура резания и тепловое поле
- •3.1.1. Источники образования тепла и распределение тепла между стружкой, инструментом и деталью
- •3.1.2. Понятие о тепловом поле и температуре резания
- •3.1.3. Основные экспериментальные методы изучения тепловых явлений
- •3.1.4. Зависимость температуры резания от условий обработки
- •3.1.5. Эмпирическая формула для расчета температуры резания
- •3.1.6. Понятия об оптимальной температуре резания
- •3.2. Смазывающе-охлаждающие технологические средства
- •3.2.1. Требования, предъявляемые к смазочно-охлаждающим жидкостям
- •3.2.2. Классификация смазочно-охлаждающих технологических средств
- •3.2.3. Влияние сотс на стойкость инструментов, силы резания и качество обработанной поверхности
- •Методы подачи сож
- •3.2.4. Рекомендации по применению сотс
- •Контрольные вопросы и задания
- •Глава 4 Износ и стойкость режущего инструмента
- •4.1. Краткие сведения об инструментальных материалах
- •4.1.1. Требования, предъявляемые к инструментальным материалам
- •4.1.2. Классификация инструментальных материалов, их маркировка и применение
- •Углеродистые и легированные инструментальные стали
- •Быстрорежущие инструментальные стали
- •Металлокерамические твердые сплавы
- •Рекомендации по применению твердых сплавов
- •Минералокерамика
- •Абразивные материалы
- •Сверхтвердые инструментальные материалы
- •Монокристаллические материалы
- •4.2. Изнашивание и разрушение режущих инструментов
- •4.2.1. Напряжения в инструменте и виды износа инструмента
- •4.2.2. Физическая сущность и виды изнашивания инструментов
- •Абразивное изнашивание
- •Термический износ
- •Адгезионное изнашивание
- •Диффузионное изнашивание
- •Окислительное изнашивание
- •Хрупкий износ
- •4.3. Понятие о стойкости режущих инструментов
- •4.3.1. График износа за время работы инструмента
- •4.3.2. Период стойкости инструмента
- •4.3.3. Критерии износа-затупления инструмента
- •4.3.4. Зависимость «скорость резания – стойкость инструмента»
- •4.3.5. Характеристики размерной стойкости инструмента
- •4.3.6. Влияние скорости (температуры) резания на характеристики размерной стойкости. Зависимость стойкость–скорость (т–V)
- •4.3.7. Положение о постоянстве оптимальной температуры резания
- •4.3.8. Экономическая скорость резания и скорость резания, соответствующая максимальной производительности на данном рабочем месте
- •4.3.9. Возможные потери при выборе высоких периодов стойкости
- •4.3.10. Влияние различных факторов на скорость резания и стойкость инструмента
- •4.3.11. Номограммы для выбора режимов резания
- •4.3.12. Характер изнашивания и средние величины максимально допустимого износа инструментов
- •4.4. Контрольные вопросы и задания
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали
- •5.1. Понятие о поверхностном слое, возникающем при резании
- •5.2. Основные параметры, определяющие качество поверхностного слоя
- •5.2.1. Шероховатость обработанной поверхности
- •5.2.2. Наклеп поверхностного слоя при резании металлов
- •5.2.3. Остаточные поверхностные напряжения
- •5.3. Зависимость параметров качества поверхностного слоя от условий обработки
- •5.3.1. Влияние условий обработки на шероховатость поверхности
- •5.3.2. Влияние условий обработки на наклеп поверхности
- •5.3.3. Влияние условий обработки на остаточные напряжения
- •5.4. Влияние качества поверхностного слоя на эксплуатационные свойства деталей
- •5.5. Особенности образования поверхности при чистовой лезвийной и абразивной обработке
- •5.5.1. Понятие об абразивном инструменте. Характеристики абразивного инструмента
- •5.5.2. Виды шлифования. Элементы режима резания при круглом наружном шлифовании
- •5.5.3. Физическая сущность процесса шлифования, особенности образования поверхностного слоя
- •5.5.4. Силы резания при шлифовании
- •5.5.5. Износ и стойкость абразивного инструмента
- •5.5.6. Назначение режимов резания при шлифовании
- •5.6. Контрольные вопросы и задания
- •Глава 6 Оптимизация процесса резания
- •6.1. Понятие об обрабатываемости материалов резанием
- •6.1.1. Основные параметры обрабатываемости
- •6.1.2. Выбор рациональных скоростей резания
- •6.1.3. Способы определения обрабатываемости
- •6.1.4. Методы улучшения обрабатываемости
- •6.1.5. Особенности обрабатываемости резанием различных материалов
- •6.2. Выбор и назначение оптимальных параметров режущего инструмента
- •6.3. Назначение оптимальных режимов резания различными методами
- •6.3.1. Табличный метод
- •6.3.2. Аналитический расчет оптимальных режимов резания
- •6.4. Контрольные вопросы и задания
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием
- •7.1. Адаптивное управление процессом резания
- •7.2. Развитие высокоскоростного резания
- •7.3. Новые принципы резания в условиях гибкого производства
- •7.4. Гидроабразивная резка материалов
- •7.5. Контрольные вопросы и задания
- •Список литературы
- •МакароВ Владимир Федорович Резание материалов
6.1.2. Выбор рациональных скоростей резания
Количественной характеристикой обрабатываемости при точении принято считать скорость резания VT, соответствующую определенному периоду стойкости Т.
Определять и сравнивать обрабатываемость металлов по скорости резания VT наиболее правильно при периоде стойкости, обеспечивающем наивысшую производительность общественного труда и наименьшую себестоимость обработки, т.е. при экономическом периоде стойкости. Но один и тот же инструмент (например, резец) можно использовать в различных условиях производства. Следовательно, инструмент может иметь различные экономические периоды стойкости.
Теоретический анализ, выполненный А.Д. Макаровым, и проведенные большие экспериментальные исследования показали, что наиболее объективными и ценными для современного производства характеристиками обрабатываемости применительно к чистовой обработке являются оптимальная скорость резания VT и оптимальный поверхностный относительный износ hо.п.о Указанные характеристики обладают следующими преимуществами перед VT:
оптимальная скорость резания Vо соответствует критической точке (точке минимума) на кривой hо.п = f(V), в то время как VT ни с какой критической точкой кривой Т = f(V) не связана;
оптимальным скоростям резания Vо при работе на различных подачах (для заданной пары инструмент–деталь) соответствует постоянная оптимальная температура резания, в то время как скоростям резания VT для разных подач в общем случае не соответствуют постоянные температуры резания;
на основе ТЭДС, зафиксированной при оптимальной скорости резания Vо, можно осуществлять автоматические процессы обработки на оптимальных режимах. Автоматические процессы обработки резанием на основе сохранения постоянства ТЭДС, зафиксированной при VT, найденной для одной из подач, не дают удовлетворительных результатов, так как одной и той же ТЭДС при работе на различных подачах соответствуют различные периоды стойкости, различающиеся в ряде случаев в 2…5 раз;
скорости Vо, являющиеся оптимальными по интенсивности размерного износа, являются оптимальными и по шероховатости обработанной поверхности;
при работе на Vо обеспечиваются и другие лучшие (стабильные) характеристики (показатели) поверхностного слоя – наклеп, остаточные поверхностные напряжения, микроструктура поверхностного слоя и т.д.;
оптимальная скорость резания Vо и величина hо.п.о не зависят от абсолютных величин износа резца hз и hr, принимаемых в качестве критерия затупления, а скорость VT и период стойкости Т являются функцией величины hз. Например, при обработке стали 13Х14Н3В2ФР резцом Т14К8 для периода стойкости Т = 30 мин при изменении величины hз на 0,3 мм, что считается критерием затупления, скорость резания изменяется в 1,67 раза (более чем в 1,5 раза). Независимость величин Vo и hо.п.о от критерия затупления позволяет резко сократить продолжительность стойкостных исследований;
количественной характеристикой обрабатываемости металла принято считать скорость резания, соответствующую периоду стойкости Т = 60 мин, т.е. VT60. Однако при обработке ряда материалов, особенно труднообрабатываемых, невозможно вообще получить период стойкости, равный 60 мин, при самом широком изменении скорости резания;
скорости VT неудобны и при сравнении режущих свойств инструментальных (различных) материалов, так как эти скорости могут (для разных марок сплавов) соответствовать различным ветвям кривой Т = f(V);
в отличие от скорости Vo скорость VT не раскрывает резервов повышения размерной стойкости инструмента.
вместе с тем обрабатываемость металлов резанием нельзя характеризовать только оптимальной скоростью резания Vo. При обработке различных металлов при одной и той же Vo интенсивность износа инструмента hо может быть различной. Например, при обработке (чистовой) сплавов ЭИ437А и ЭП220 резцом ВК6М она различается почти в 50 раз.
Таким образом, для полного представления об обрабатываемости металлов резанием необходимо знать величину как оптимальной скорости резания, так и поверхностного относительного износа, наблюдаемого при этой скорости.
В нормативно-справочной литературе обрабатываемость оценивается в первую очередь интенсивностью затупления режущих инструментов и уровнем целесообразных скоростей резания VT. Необходимо, однако, отметить, что скорость резания VT как характеристика обрабатываемости имеет ряд недостатков: не известен предел допустимого снижения скоростей резания, проводимого в целях повышения периода стойкости; при сравнении режущих свойств различных инструментальных материалов в зависимости от уровня скорости VT не всегда правильно можно оценить их относительную износостойкость; скорость VT зависит от принятого критерия затупления. Эту характеристику невозможно использовать для автоматического регулирования процесса резания, так как разным комбинациям v, S, t будут соответствовать резко отличающиеся периоды стойкости.
Основные недостатки, присущие скорости VT, имеет и скорость Vэ, поскольку она зависит от организационно-технических условий производства, модели станка, конструкции и способа заточки инструмента, разряда рабочего и др. Скорость Vэ стабилизируется только для конкретных условий. Более перспективным с этих позиций является оптимальная скорость резания Vo, которая не базируется на абсолютных показателях. К сожалению, подробная систематизация уровней Vo и hо.п для различных обрабатываемых материалов в настоящее время отсутствует. Это заставляет пользоваться в качестве основного показателя обрабатываемости значением VT.
Допустимая скорость VT, или обрабатываемость металла с точки зрения уровня скоростей резания, определяется двумя характеристиками обрабатываемого металла. Это, во-первых, истирающая способность kист, во-вторых, степень нагрева рабочей части инструмента при снятии стружки, характеризуемая температурой резания , поскольку они связаны с двумя указанными особенностями, т.е. VT = f(, kист).
