- •В.Ф. Макаров резание материалов
- •Оглавление
- •Глава 1 Кинематика процесса резания 19
- •Глава 2 Динамика процесса резания 58
- •Глава 3 Теплофизика процесса резания 159
- •Глава 4 Износ и стойкость режущего инструмента 205
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали 286
- •Глава 6 Оптимизация процесса резания 330
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием 379
- •Введение
- •Глава 1 Кинематика процесса резания
- •1.1. Основы кинематики резания
- •1.1.1. Виды движений при резании материалов
- •1.1.2. Поверхности заготовки в процессе резания
- •1.1.3. Кинематические схемы резания
- •1.2. Геометрия режущей части инструмента
- •1.2.1. Конструкция, части и поверхности токарного резца
- •1.2.2. Геометрические параметры резца (углы заточки)
- •1.2.3. Изменения углов заточки режущих инструментов при установке и в процессе резания
- •1.2.4. Формы передней поверхности резцов
- •1.3. Классификация видов обработки резанием
- •1.4. Элементы режима резания и срезаемого слоя
- •1.4.1. Элементы режима резания
- •1.4.2. Элементы срезаемого слоя
- •Остаточное сечение среза при точении
- •Площадь поперечного сечения среза при фрезеровании
- •Основное время резания
- •Контрольные вопросы и задания
- •Глава 2 Динамика процесса резания
- •2.1. Деформация и напряжения в процессе резания
- •2.1.1. Физическая сущность процесса резания
- •Некоторые сведения о пластической деформации металла
- •2.1.2. Методы изучения и оценки пластической деформации
- •2.1.3. Методы моделирования деформаций при изучении процессов резания
- •Математические зависимости
- •2.2. Процесс стружкообразования
- •2.2.1. Типы стружек при резании пластичных и хрупких материалов
- •2.2.2. Деформированное состояние зоны стружкообразования при элементной и сливной стружке
- •2.2.3. Взаимосвязь явлений стружкообразования в процессе резания
- •2.2.4. Изменение размеров и формы стружки по сравнению со срезаемым слоем. Понятие об усадке стружки
- •2.2.5. Методы завивания и дробления сливной стружки
- •2.3. Контактные явления, трение и наростообразование при резании материалов
- •2.3.1. Контактные явления и трение на передней и задней поверхностях инструмента
- •2.3.2. Процесс наростообразования
- •2.3.3. Влияние условий обработки на высоту нароста
- •2.3.4. Положительные и отрицательные свойства нароста
- •2.3.5. Методы борьбы с наростом
- •2.4. Сила резания, работа и мощность резания
- •2.4.1. Система сил, действующих на передней и задней поверхностях инструмента
- •2.4.2. Составляющие силы резания при точении
- •2.4.3. Зависимость составляющих силы резания от условий обработки
- •2.4.4. Влияние геометрических параметров резца на составляющие силы резания
- •2.4.5. Влияние степени затупления резца и смазочно-охлаждающих жидкостей на составляющие силы резания
- •2.4.6. Методы определения сил резания
- •2.4.7. Вибрации и шум при обработке резанием
- •Особенности применяемых систем вибродиагностики
- •2.4.8. Эмпирические формулы для расчета составляющих силы резания
- •2.4.9. Работа и мощность резания
- •2.5. Контрольные вопросы и задания
- •Глава 3 Теплофизика процесса резания
- •3.1. Температура резания и тепловое поле
- •3.1.1. Источники образования тепла и распределение тепла между стружкой, инструментом и деталью
- •3.1.2. Понятие о тепловом поле и температуре резания
- •3.1.3. Основные экспериментальные методы изучения тепловых явлений
- •3.1.4. Зависимость температуры резания от условий обработки
- •3.1.5. Эмпирическая формула для расчета температуры резания
- •3.1.6. Понятия об оптимальной температуре резания
- •3.2. Смазывающе-охлаждающие технологические средства
- •3.2.1. Требования, предъявляемые к смазочно-охлаждающим жидкостям
- •3.2.2. Классификация смазочно-охлаждающих технологических средств
- •3.2.3. Влияние сотс на стойкость инструментов, силы резания и качество обработанной поверхности
- •Методы подачи сож
- •3.2.4. Рекомендации по применению сотс
- •Контрольные вопросы и задания
- •Глава 4 Износ и стойкость режущего инструмента
- •4.1. Краткие сведения об инструментальных материалах
- •4.1.1. Требования, предъявляемые к инструментальным материалам
- •4.1.2. Классификация инструментальных материалов, их маркировка и применение
- •Углеродистые и легированные инструментальные стали
- •Быстрорежущие инструментальные стали
- •Металлокерамические твердые сплавы
- •Рекомендации по применению твердых сплавов
- •Минералокерамика
- •Абразивные материалы
- •Сверхтвердые инструментальные материалы
- •Монокристаллические материалы
- •4.2. Изнашивание и разрушение режущих инструментов
- •4.2.1. Напряжения в инструменте и виды износа инструмента
- •4.2.2. Физическая сущность и виды изнашивания инструментов
- •Абразивное изнашивание
- •Термический износ
- •Адгезионное изнашивание
- •Диффузионное изнашивание
- •Окислительное изнашивание
- •Хрупкий износ
- •4.3. Понятие о стойкости режущих инструментов
- •4.3.1. График износа за время работы инструмента
- •4.3.2. Период стойкости инструмента
- •4.3.3. Критерии износа-затупления инструмента
- •4.3.4. Зависимость «скорость резания – стойкость инструмента»
- •4.3.5. Характеристики размерной стойкости инструмента
- •4.3.6. Влияние скорости (температуры) резания на характеристики размерной стойкости. Зависимость стойкость–скорость (т–V)
- •4.3.7. Положение о постоянстве оптимальной температуры резания
- •4.3.8. Экономическая скорость резания и скорость резания, соответствующая максимальной производительности на данном рабочем месте
- •4.3.9. Возможные потери при выборе высоких периодов стойкости
- •4.3.10. Влияние различных факторов на скорость резания и стойкость инструмента
- •4.3.11. Номограммы для выбора режимов резания
- •4.3.12. Характер изнашивания и средние величины максимально допустимого износа инструментов
- •4.4. Контрольные вопросы и задания
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали
- •5.1. Понятие о поверхностном слое, возникающем при резании
- •5.2. Основные параметры, определяющие качество поверхностного слоя
- •5.2.1. Шероховатость обработанной поверхности
- •5.2.2. Наклеп поверхностного слоя при резании металлов
- •5.2.3. Остаточные поверхностные напряжения
- •5.3. Зависимость параметров качества поверхностного слоя от условий обработки
- •5.3.1. Влияние условий обработки на шероховатость поверхности
- •5.3.2. Влияние условий обработки на наклеп поверхности
- •5.3.3. Влияние условий обработки на остаточные напряжения
- •5.4. Влияние качества поверхностного слоя на эксплуатационные свойства деталей
- •5.5. Особенности образования поверхности при чистовой лезвийной и абразивной обработке
- •5.5.1. Понятие об абразивном инструменте. Характеристики абразивного инструмента
- •5.5.2. Виды шлифования. Элементы режима резания при круглом наружном шлифовании
- •5.5.3. Физическая сущность процесса шлифования, особенности образования поверхностного слоя
- •5.5.4. Силы резания при шлифовании
- •5.5.5. Износ и стойкость абразивного инструмента
- •5.5.6. Назначение режимов резания при шлифовании
- •5.6. Контрольные вопросы и задания
- •Глава 6 Оптимизация процесса резания
- •6.1. Понятие об обрабатываемости материалов резанием
- •6.1.1. Основные параметры обрабатываемости
- •6.1.2. Выбор рациональных скоростей резания
- •6.1.3. Способы определения обрабатываемости
- •6.1.4. Методы улучшения обрабатываемости
- •6.1.5. Особенности обрабатываемости резанием различных материалов
- •6.2. Выбор и назначение оптимальных параметров режущего инструмента
- •6.3. Назначение оптимальных режимов резания различными методами
- •6.3.1. Табличный метод
- •6.3.2. Аналитический расчет оптимальных режимов резания
- •6.4. Контрольные вопросы и задания
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием
- •7.1. Адаптивное управление процессом резания
- •7.2. Развитие высокоскоростного резания
- •7.3. Новые принципы резания в условиях гибкого производства
- •7.4. Гидроабразивная резка материалов
- •7.5. Контрольные вопросы и задания
- •Список литературы
- •МакароВ Владимир Федорович Резание материалов
5.3.3. Влияние условий обработки на остаточные напряжения
Влияние элементов режима резания. Влияние скорости резания на остаточные напряжения следует рассматривать как влияние комплексного параметра, определяющего процесс резания. С ростом V резания повышается резания, что должно приводить к уменьшению сжимающих напряжений и увеличению напряжений растяжения. Другие физические явления, происходящие в зоне резания, также проявляются тем или иным образом в зависимости от температуры.
Снижение силового фактора при повышении скорости резания до определенного значения происходит в результате сужения пластической зоны и уменьшения глубины ее распространения ниже линии среза. Кроме того, с увеличением скорости резания происходит снижение b (b выступает в данном случае как силовой фактор). Все это способствует возникновению напряжений растяжения, что и наблюдается в действительности.
Необходимо отметить, однако, что действие большинства из указанных факторов на определенной скорости резания ослабевает (или совсем прекращается); в этот момент начинают действовать другие факторы, которые могут способствовать снижению напряжений.
Таким образом, анализ причин, приводящих к образованию и изменению остаточных поверхностных напряжений при изменении V в достаточно широких пределах, позволяет заключить (применительно к пластичным материалам), что:
в слое, прилегающем к поверхности, должны формироваться тангенциальные напряжения растяжения;
зависимость максимальной величины max от скорости резания должна иметь характерную точку перегиба или носить экстремальный характер.
Экспериментальные исследования остаточных напряжений полностью подтверждают это предположение. Например, при протягивании жаропрочных сплавов ЭИ787-ВД и ВЖЛ14 величина максимальных остаточных напряжений имеет переменную характеристику с минимальными значениями в области оптимальных скоростей резания 15…20 м/мин для этих сплавов (рис. 130).
Рис. 130. Влияние скорости протягивания V хвостовиков лопаток и пазов в кольцах направляющих аппаратов из жаропрочных никелевых сплавов на
глубину h и степень наклепа H протянутой поверхности
ЭИ787-ВД, острые протяжки; ЭИ787-ВД, затупленные протяжки;
ВЖЛ14, острые протяжки; ВЖЛ14, затупленные протяжки
Когда главным образом действует силовой фактор, то возникают сжимающие напряжения, и чем больше подача, тем при меньших Vо наблюдается перегиб (рис. 131). Характер зависимости max = = f(S) определяется уровнем скорости (температуры) резания (рис. 132). При резании на низкой скорости Vо1 повышение подачи приводит к увеличению объема и интенсивности пластической деформации и повышению температуры; причем последняя приближается к своему оптимальному значению.
|
|
Рис. 131. Влияние скорости резания на шероховатость Rz, коэффициент трения и остаточные поверхност- ные напряжения max |
Рис. 132. Влияние скорости резания на max при обработке на разных подачах S |
В этом случае повышение подачи приводит к росту остаточных тангенциальных напряжений растяжения. Снижение коэффициента трения на задней поверхности инструмента уменьшает действие силового фактора и также способствует росту напряжений растяжения.
При работе на средней скорости резания Vо2 зависимость max = f(S) носит экстремальный характер. Экстремальный характер функции max = f(S) может быть объяснен переходом температуры резания через оптимальное значение. Снижению максимальной величины остаточных напряжений после некоторого значения подачи может способствовать повышение коэффициента трения по задней поверхности ', т.е. повышение действия силового фактора.
Для высокой скорости резания Vо3 с увеличением подачи происходит монотонное снижение тангенциальных растягивающих напряжений (рис. 133). Это может быть вызвано возрастающим действием силового фактора вследствие повышения '. Кроме того, при высоких скоростях резания ослабевает действие температурного фактора.
В
Рис.
133. Влияние подачи на характер остаточных
напряжений и температуры при раз-
личных скоростях
резания
Главным фактором, определяющим коэффициент трения по задней поверхности резца, параметры наклепанного слоя остаточного напряжения и интенсивность износа инструмента, является средняя температура контакта, а скорость резания выступает в основном как температурный фактор.
