- •В.Ф. Макаров резание материалов
- •Оглавление
- •Глава 1 Кинематика процесса резания 19
- •Глава 2 Динамика процесса резания 58
- •Глава 3 Теплофизика процесса резания 159
- •Глава 4 Износ и стойкость режущего инструмента 205
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали 286
- •Глава 6 Оптимизация процесса резания 330
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием 379
- •Введение
- •Глава 1 Кинематика процесса резания
- •1.1. Основы кинематики резания
- •1.1.1. Виды движений при резании материалов
- •1.1.2. Поверхности заготовки в процессе резания
- •1.1.3. Кинематические схемы резания
- •1.2. Геометрия режущей части инструмента
- •1.2.1. Конструкция, части и поверхности токарного резца
- •1.2.2. Геометрические параметры резца (углы заточки)
- •1.2.3. Изменения углов заточки режущих инструментов при установке и в процессе резания
- •1.2.4. Формы передней поверхности резцов
- •1.3. Классификация видов обработки резанием
- •1.4. Элементы режима резания и срезаемого слоя
- •1.4.1. Элементы режима резания
- •1.4.2. Элементы срезаемого слоя
- •Остаточное сечение среза при точении
- •Площадь поперечного сечения среза при фрезеровании
- •Основное время резания
- •Контрольные вопросы и задания
- •Глава 2 Динамика процесса резания
- •2.1. Деформация и напряжения в процессе резания
- •2.1.1. Физическая сущность процесса резания
- •Некоторые сведения о пластической деформации металла
- •2.1.2. Методы изучения и оценки пластической деформации
- •2.1.3. Методы моделирования деформаций при изучении процессов резания
- •Математические зависимости
- •2.2. Процесс стружкообразования
- •2.2.1. Типы стружек при резании пластичных и хрупких материалов
- •2.2.2. Деформированное состояние зоны стружкообразования при элементной и сливной стружке
- •2.2.3. Взаимосвязь явлений стружкообразования в процессе резания
- •2.2.4. Изменение размеров и формы стружки по сравнению со срезаемым слоем. Понятие об усадке стружки
- •2.2.5. Методы завивания и дробления сливной стружки
- •2.3. Контактные явления, трение и наростообразование при резании материалов
- •2.3.1. Контактные явления и трение на передней и задней поверхностях инструмента
- •2.3.2. Процесс наростообразования
- •2.3.3. Влияние условий обработки на высоту нароста
- •2.3.4. Положительные и отрицательные свойства нароста
- •2.3.5. Методы борьбы с наростом
- •2.4. Сила резания, работа и мощность резания
- •2.4.1. Система сил, действующих на передней и задней поверхностях инструмента
- •2.4.2. Составляющие силы резания при точении
- •2.4.3. Зависимость составляющих силы резания от условий обработки
- •2.4.4. Влияние геометрических параметров резца на составляющие силы резания
- •2.4.5. Влияние степени затупления резца и смазочно-охлаждающих жидкостей на составляющие силы резания
- •2.4.6. Методы определения сил резания
- •2.4.7. Вибрации и шум при обработке резанием
- •Особенности применяемых систем вибродиагностики
- •2.4.8. Эмпирические формулы для расчета составляющих силы резания
- •2.4.9. Работа и мощность резания
- •2.5. Контрольные вопросы и задания
- •Глава 3 Теплофизика процесса резания
- •3.1. Температура резания и тепловое поле
- •3.1.1. Источники образования тепла и распределение тепла между стружкой, инструментом и деталью
- •3.1.2. Понятие о тепловом поле и температуре резания
- •3.1.3. Основные экспериментальные методы изучения тепловых явлений
- •3.1.4. Зависимость температуры резания от условий обработки
- •3.1.5. Эмпирическая формула для расчета температуры резания
- •3.1.6. Понятия об оптимальной температуре резания
- •3.2. Смазывающе-охлаждающие технологические средства
- •3.2.1. Требования, предъявляемые к смазочно-охлаждающим жидкостям
- •3.2.2. Классификация смазочно-охлаждающих технологических средств
- •3.2.3. Влияние сотс на стойкость инструментов, силы резания и качество обработанной поверхности
- •Методы подачи сож
- •3.2.4. Рекомендации по применению сотс
- •Контрольные вопросы и задания
- •Глава 4 Износ и стойкость режущего инструмента
- •4.1. Краткие сведения об инструментальных материалах
- •4.1.1. Требования, предъявляемые к инструментальным материалам
- •4.1.2. Классификация инструментальных материалов, их маркировка и применение
- •Углеродистые и легированные инструментальные стали
- •Быстрорежущие инструментальные стали
- •Металлокерамические твердые сплавы
- •Рекомендации по применению твердых сплавов
- •Минералокерамика
- •Абразивные материалы
- •Сверхтвердые инструментальные материалы
- •Монокристаллические материалы
- •4.2. Изнашивание и разрушение режущих инструментов
- •4.2.1. Напряжения в инструменте и виды износа инструмента
- •4.2.2. Физическая сущность и виды изнашивания инструментов
- •Абразивное изнашивание
- •Термический износ
- •Адгезионное изнашивание
- •Диффузионное изнашивание
- •Окислительное изнашивание
- •Хрупкий износ
- •4.3. Понятие о стойкости режущих инструментов
- •4.3.1. График износа за время работы инструмента
- •4.3.2. Период стойкости инструмента
- •4.3.3. Критерии износа-затупления инструмента
- •4.3.4. Зависимость «скорость резания – стойкость инструмента»
- •4.3.5. Характеристики размерной стойкости инструмента
- •4.3.6. Влияние скорости (температуры) резания на характеристики размерной стойкости. Зависимость стойкость–скорость (т–V)
- •4.3.7. Положение о постоянстве оптимальной температуры резания
- •4.3.8. Экономическая скорость резания и скорость резания, соответствующая максимальной производительности на данном рабочем месте
- •4.3.9. Возможные потери при выборе высоких периодов стойкости
- •4.3.10. Влияние различных факторов на скорость резания и стойкость инструмента
- •4.3.11. Номограммы для выбора режимов резания
- •4.3.12. Характер изнашивания и средние величины максимально допустимого износа инструментов
- •4.4. Контрольные вопросы и задания
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали
- •5.1. Понятие о поверхностном слое, возникающем при резании
- •5.2. Основные параметры, определяющие качество поверхностного слоя
- •5.2.1. Шероховатость обработанной поверхности
- •5.2.2. Наклеп поверхностного слоя при резании металлов
- •5.2.3. Остаточные поверхностные напряжения
- •5.3. Зависимость параметров качества поверхностного слоя от условий обработки
- •5.3.1. Влияние условий обработки на шероховатость поверхности
- •5.3.2. Влияние условий обработки на наклеп поверхности
- •5.3.3. Влияние условий обработки на остаточные напряжения
- •5.4. Влияние качества поверхностного слоя на эксплуатационные свойства деталей
- •5.5. Особенности образования поверхности при чистовой лезвийной и абразивной обработке
- •5.5.1. Понятие об абразивном инструменте. Характеристики абразивного инструмента
- •5.5.2. Виды шлифования. Элементы режима резания при круглом наружном шлифовании
- •5.5.3. Физическая сущность процесса шлифования, особенности образования поверхностного слоя
- •5.5.4. Силы резания при шлифовании
- •5.5.5. Износ и стойкость абразивного инструмента
- •5.5.6. Назначение режимов резания при шлифовании
- •5.6. Контрольные вопросы и задания
- •Глава 6 Оптимизация процесса резания
- •6.1. Понятие об обрабатываемости материалов резанием
- •6.1.1. Основные параметры обрабатываемости
- •6.1.2. Выбор рациональных скоростей резания
- •6.1.3. Способы определения обрабатываемости
- •6.1.4. Методы улучшения обрабатываемости
- •6.1.5. Особенности обрабатываемости резанием различных материалов
- •6.2. Выбор и назначение оптимальных параметров режущего инструмента
- •6.3. Назначение оптимальных режимов резания различными методами
- •6.3.1. Табличный метод
- •6.3.2. Аналитический расчет оптимальных режимов резания
- •6.4. Контрольные вопросы и задания
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием
- •7.1. Адаптивное управление процессом резания
- •7.2. Развитие высокоскоростного резания
- •7.3. Новые принципы резания в условиях гибкого производства
- •7.4. Гидроабразивная резка материалов
- •7.5. Контрольные вопросы и задания
- •Список литературы
- •МакароВ Владимир Федорович Резание материалов
Хрупкий износ
Хрупкому износу подвергаются твердосплавные инструменты, алмазы, минералокерамика, керметы. Вследствие неравномерного строения, твердости, зернистости, вследствие вибраций в процессе резания часто происходит выкрашивание, осыпание лезвия. Хрупкому износу может способствовать истирание связки. Хрупкий износ проявляется главным образом в зоне низких скоростей резания.
В заключение можно отметить, что в действительности мы наблюдаем суммарный износ инструмента, и разграничить доли каждого износа довольно трудно. Измерение износа проводится по передней и задней граням с помощью измерительных луп и инструментальных микроскопов.
4.3. Понятие о стойкости режущих инструментов
4.3.1. График износа за время работы инструмента
Изображение закономерности нарастания износа за время работы инструмента называют кривой или графиком износа. Характерные кривые износа задней поверхности инструмента представлены на рис. 104.
Если инструмент изнашивается одновременно по передней и задней поверхностям, то кривая износа задней поверхности (рис. 104, а) состоит из трех более или менее отчетливо выраженных участков. Участок кривой износа ОА соответствует периоду приработки инструмента. На этом участке происходит интенсивное нарастание износа hз. При дальнейшей работе инструмента нарастание износа замедляется, так как это связано с уменьшением контактных касательных напряжений на площадке износа по мере увеличения ее размеров. Участок кривой АВ – участок, соответствующий периоду нормального изнашивания инструмента. По достижении некоторой величины В износ начинает резко расти и кривая износа идет круто вверх. Участок кривой за точкой В соответствует периоду катастрофического износа инструмента. В этом периоде износ нарастает настолько быстро, что если не прекратить дальнейшую работу, то это может привести к чрезмерно большому износу задней поверхности, при котором резко сократится число переточек, допускаемых инструментом, и увеличится время, затрачиваемое на переточку. Поэтому рациональная эксплуатация инструмента исключает работу в периоде катастрофического изнашивания. По мере износа инструмента в ряде случаев наблюдается рост температуры в зоне резания. При обработке фасонным инструментом по мере износа может теряться профиль.
а б в
г
Рис. 104. Кривые износа инструмента: по передней поверхности (а, б); только по задней поверхности (в); классический вид кривой износа (г)
При средних значениях скоростей резания период нормального изнашивания составляет 85…90 % периода стойкости инструмента. По мере увеличения скорости резания период нормального изнашивания сокращается и при очень высоких скоростях резания становится настолько малым, что после периода приработки почти сразу наступает период катастрофического изнашивания. Геометрические параметры инструмента должны быть такими, чтобы максимально увеличить период нормального изнашивания и сократить или полностью устранить период приработки.
При изнашивании инструмента преимущественно по задней поверхности, когда износ передней поверхности незначителен, кривая износа (см. рис. 104, б) вогнута относительно оси абсцисс. В этом случае период приработки отсутствует и на участке АВ кривой износа, соответствующем периоду нормального изнашивания, износ вначале медленно, а затем более быстро возрастает до точки В – начала периода катастрофического изнашивания.
Если инструмент изнашивается только по задней поверхности, то кривая износа имеет вид, изображенный на рис. 104, в. После периода приработки период нормального изнашивания продолжается значительно дольше, чем в первых двух случаях. Период нормального изнашивания в последнем случае настолько велик, что, как правило, работу инструмента прекращают еще до перехода в период катастрофического изнашивания. На рис. 105, а изображена схема износа передней поверхности инструмента. Образовавшаяся на передней поверхности лунка износа характеризуется шириной lл, длиной bл и глубиной hл. По мере работы инструмента первые следы износа появляются в точке, соответствующей максимальной температуре передней поверхности. Ширина и глубина лунки постепенно увеличиваются, а радиус кривизны кривой, очерчивающей дно лунки, уменьшается. Одновременно сокращается перемычка f от края лунки до главного лезвия. Центр кривизны лунки по мере изнашивания передней поверхности отодвигается от главного лезвия, а поэтому по ширине лунка от главного лезвия удаляется значительно быстрее, чем приближается к нему. Перемычка f между главным лезвием и краем лунки имеется только в том случае, когда на передней поверхности образуется хорошо развитый и устойчивый нарост, отодвигающий стружку от главного лезвия инструмента. Когда нароста нет или он настолько мал, что не может оказать защитного действия по отношению к инструменту, то перемычка отсутствует и лунка полностью не формируется.
а б
Рис. 105. Схема износа передней поверхности (а) и изменения размеров лунки во времени (б)
Изменение размеров лунки по мере изнашивания передней поверхности изображено на рис. 105, б. Длина bл лунки, равная рабочей длине главного лезвия, за все время работы инструмента остается одинаковой. Глубина hл лунки вначале возрастает быстро, затем ее рост замедляется и только после определенного периода работы инструмента вновь интенсивно возрастает. Таким образом, на кривой, характеризующей рост глубины лунки, наблюдаются периоды приработки, нормального и катастрофического изнашивания. Ширина lл лунки, как и ее глубина, вначале возрастает быстро, а затем ее рост замедляется. Перемычка f, если она имеется, интенсивно уменьшается при быстром росте ширины лунки. Когда же темп роста ширины лунки замедляется, то замедляется и уменьшение перемычки.
Величина износа передней и задней поверхностей инструмента (ширина площадки износа и глубина лунки) зависит от времени работы инструмента, температуры резания и скоростей перемещения поверхности резания и стружки относительно задней и передней поверхностей. В результате обработки опытных данных, полученных при изучении влияния времени Т работы инструмента, глубины резания, подачи и скорости резания на ширину площадки износа и глубину лунки износа, были составлены эмпирические формулы, описывающие связь между величиной износа h и факторами режима резания для периода Т нормального изнашивания инструмента.
Интенсивность влияния параметров режима резания на величину износа задней поверхности такая же, как и на температуру резания. Параметры режима, которые оказывают большее влияние на температуру резания, также сильнее влияют и на износ задней поверхности инструмента, и наоборот. Последнее подтверждает, что величина линейного износа инструмента пропорциональна температуре резания.
При нарастании износа может происходить изменение шероховатости обрабатываемой поверхности в ту или иную сторону.
С изменением износа меняются и качественные показатели поверхностного слоя (наклеп, остаточные поверхностные напряжения и шероховатость поверхности.
