- •В.Ф. Макаров резание материалов
- •Оглавление
- •Глава 1 Кинематика процесса резания 19
- •Глава 2 Динамика процесса резания 58
- •Глава 3 Теплофизика процесса резания 159
- •Глава 4 Износ и стойкость режущего инструмента 205
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали 286
- •Глава 6 Оптимизация процесса резания 330
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием 379
- •Введение
- •Глава 1 Кинематика процесса резания
- •1.1. Основы кинематики резания
- •1.1.1. Виды движений при резании материалов
- •1.1.2. Поверхности заготовки в процессе резания
- •1.1.3. Кинематические схемы резания
- •1.2. Геометрия режущей части инструмента
- •1.2.1. Конструкция, части и поверхности токарного резца
- •1.2.2. Геометрические параметры резца (углы заточки)
- •1.2.3. Изменения углов заточки режущих инструментов при установке и в процессе резания
- •1.2.4. Формы передней поверхности резцов
- •1.3. Классификация видов обработки резанием
- •1.4. Элементы режима резания и срезаемого слоя
- •1.4.1. Элементы режима резания
- •1.4.2. Элементы срезаемого слоя
- •Остаточное сечение среза при точении
- •Площадь поперечного сечения среза при фрезеровании
- •Основное время резания
- •Контрольные вопросы и задания
- •Глава 2 Динамика процесса резания
- •2.1. Деформация и напряжения в процессе резания
- •2.1.1. Физическая сущность процесса резания
- •Некоторые сведения о пластической деформации металла
- •2.1.2. Методы изучения и оценки пластической деформации
- •2.1.3. Методы моделирования деформаций при изучении процессов резания
- •Математические зависимости
- •2.2. Процесс стружкообразования
- •2.2.1. Типы стружек при резании пластичных и хрупких материалов
- •2.2.2. Деформированное состояние зоны стружкообразования при элементной и сливной стружке
- •2.2.3. Взаимосвязь явлений стружкообразования в процессе резания
- •2.2.4. Изменение размеров и формы стружки по сравнению со срезаемым слоем. Понятие об усадке стружки
- •2.2.5. Методы завивания и дробления сливной стружки
- •2.3. Контактные явления, трение и наростообразование при резании материалов
- •2.3.1. Контактные явления и трение на передней и задней поверхностях инструмента
- •2.3.2. Процесс наростообразования
- •2.3.3. Влияние условий обработки на высоту нароста
- •2.3.4. Положительные и отрицательные свойства нароста
- •2.3.5. Методы борьбы с наростом
- •2.4. Сила резания, работа и мощность резания
- •2.4.1. Система сил, действующих на передней и задней поверхностях инструмента
- •2.4.2. Составляющие силы резания при точении
- •2.4.3. Зависимость составляющих силы резания от условий обработки
- •2.4.4. Влияние геометрических параметров резца на составляющие силы резания
- •2.4.5. Влияние степени затупления резца и смазочно-охлаждающих жидкостей на составляющие силы резания
- •2.4.6. Методы определения сил резания
- •2.4.7. Вибрации и шум при обработке резанием
- •Особенности применяемых систем вибродиагностики
- •2.4.8. Эмпирические формулы для расчета составляющих силы резания
- •2.4.9. Работа и мощность резания
- •2.5. Контрольные вопросы и задания
- •Глава 3 Теплофизика процесса резания
- •3.1. Температура резания и тепловое поле
- •3.1.1. Источники образования тепла и распределение тепла между стружкой, инструментом и деталью
- •3.1.2. Понятие о тепловом поле и температуре резания
- •3.1.3. Основные экспериментальные методы изучения тепловых явлений
- •3.1.4. Зависимость температуры резания от условий обработки
- •3.1.5. Эмпирическая формула для расчета температуры резания
- •3.1.6. Понятия об оптимальной температуре резания
- •3.2. Смазывающе-охлаждающие технологические средства
- •3.2.1. Требования, предъявляемые к смазочно-охлаждающим жидкостям
- •3.2.2. Классификация смазочно-охлаждающих технологических средств
- •3.2.3. Влияние сотс на стойкость инструментов, силы резания и качество обработанной поверхности
- •Методы подачи сож
- •3.2.4. Рекомендации по применению сотс
- •Контрольные вопросы и задания
- •Глава 4 Износ и стойкость режущего инструмента
- •4.1. Краткие сведения об инструментальных материалах
- •4.1.1. Требования, предъявляемые к инструментальным материалам
- •4.1.2. Классификация инструментальных материалов, их маркировка и применение
- •Углеродистые и легированные инструментальные стали
- •Быстрорежущие инструментальные стали
- •Металлокерамические твердые сплавы
- •Рекомендации по применению твердых сплавов
- •Минералокерамика
- •Абразивные материалы
- •Сверхтвердые инструментальные материалы
- •Монокристаллические материалы
- •4.2. Изнашивание и разрушение режущих инструментов
- •4.2.1. Напряжения в инструменте и виды износа инструмента
- •4.2.2. Физическая сущность и виды изнашивания инструментов
- •Абразивное изнашивание
- •Термический износ
- •Адгезионное изнашивание
- •Диффузионное изнашивание
- •Окислительное изнашивание
- •Хрупкий износ
- •4.3. Понятие о стойкости режущих инструментов
- •4.3.1. График износа за время работы инструмента
- •4.3.2. Период стойкости инструмента
- •4.3.3. Критерии износа-затупления инструмента
- •4.3.4. Зависимость «скорость резания – стойкость инструмента»
- •4.3.5. Характеристики размерной стойкости инструмента
- •4.3.6. Влияние скорости (температуры) резания на характеристики размерной стойкости. Зависимость стойкость–скорость (т–V)
- •4.3.7. Положение о постоянстве оптимальной температуры резания
- •4.3.8. Экономическая скорость резания и скорость резания, соответствующая максимальной производительности на данном рабочем месте
- •4.3.9. Возможные потери при выборе высоких периодов стойкости
- •4.3.10. Влияние различных факторов на скорость резания и стойкость инструмента
- •4.3.11. Номограммы для выбора режимов резания
- •4.3.12. Характер изнашивания и средние величины максимально допустимого износа инструментов
- •4.4. Контрольные вопросы и задания
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали
- •5.1. Понятие о поверхностном слое, возникающем при резании
- •5.2. Основные параметры, определяющие качество поверхностного слоя
- •5.2.1. Шероховатость обработанной поверхности
- •5.2.2. Наклеп поверхностного слоя при резании металлов
- •5.2.3. Остаточные поверхностные напряжения
- •5.3. Зависимость параметров качества поверхностного слоя от условий обработки
- •5.3.1. Влияние условий обработки на шероховатость поверхности
- •5.3.2. Влияние условий обработки на наклеп поверхности
- •5.3.3. Влияние условий обработки на остаточные напряжения
- •5.4. Влияние качества поверхностного слоя на эксплуатационные свойства деталей
- •5.5. Особенности образования поверхности при чистовой лезвийной и абразивной обработке
- •5.5.1. Понятие об абразивном инструменте. Характеристики абразивного инструмента
- •5.5.2. Виды шлифования. Элементы режима резания при круглом наружном шлифовании
- •5.5.3. Физическая сущность процесса шлифования, особенности образования поверхностного слоя
- •5.5.4. Силы резания при шлифовании
- •5.5.5. Износ и стойкость абразивного инструмента
- •5.5.6. Назначение режимов резания при шлифовании
- •5.6. Контрольные вопросы и задания
- •Глава 6 Оптимизация процесса резания
- •6.1. Понятие об обрабатываемости материалов резанием
- •6.1.1. Основные параметры обрабатываемости
- •6.1.2. Выбор рациональных скоростей резания
- •6.1.3. Способы определения обрабатываемости
- •6.1.4. Методы улучшения обрабатываемости
- •6.1.5. Особенности обрабатываемости резанием различных материалов
- •6.2. Выбор и назначение оптимальных параметров режущего инструмента
- •6.3. Назначение оптимальных режимов резания различными методами
- •6.3.1. Табличный метод
- •6.3.2. Аналитический расчет оптимальных режимов резания
- •6.4. Контрольные вопросы и задания
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием
- •7.1. Адаптивное управление процессом резания
- •7.2. Развитие высокоскоростного резания
- •7.3. Новые принципы резания в условиях гибкого производства
- •7.4. Гидроабразивная резка материалов
- •7.5. Контрольные вопросы и задания
- •Список литературы
- •МакароВ Владимир Федорович Резание материалов
2.4.8. Эмпирические формулы для расчета составляющих силы резания
Теоретический расчет составляющих сил резания представляет собой весьма сложную задачу. В процессе резания необходимо учесть множество взаимовлияющих факторов – механические свойства обрабатываемого и инструментального материала, процессы упругой и пластической деформации, изменение условий трения и контактных процессов на передней и задней поверхностях инструмента, условия резания, геометрия инструмента и т.д. Поэтому приняты для практики данные многочисленных экспериментальных исследований, которые представлены в справочной литературе. Обобщенные формулы составляющих силы резания с учетом всех факторов имеют следующий вид:
Рz = СPz t xpz · S ypz · V nрz Kм K K Kr Kh Kсотс, Н,
Ру = СPу t xpу · S ypу · V nрy Kм K K Kr Kh Kсотс, Н,
Рх = СPх t xPх · S ypх · V nрх Kм K K Kr Kh Kсотс, Н,
где СРz – постоянная, зависящая от обрабатываемого материала, учитывает стандартные условия резания, например, для стали 45: b = = 75 кгс/мм2; = 10; = 8; = 45; = 0; r = 2 мм; hз = 0,8…1,0 мм;
х, у, n – показатели степени для стандартных условий резания, например, х = 1,0; у = 0,75; n = 0,15;
K – поправочные коэффициенты, учитывающие влияние отклонения от стандартных условий – прочности обрабатываемого материала, геометрии инструмента, износа инструмента и вида СОТС на составляющие силы резания.
2.4.9. Работа и мощность резания
Для разрушения материала срезаемого слоя и превращения его в стружку необходимо затратить определенное количество энергии и произвести работу резания. В общем виде работа резания складывается из работы упругой Аупр и пластической Апл деформации, работы скалывания и сдвига элементов стружки по плоскости сдвига Асд, работы трения по передней Ат.п и задней Ат.з поверхностям инструмента. Можно записать для работы резания, что
А = Апл + Аупр + Асд + Ат.п + Ат.з.
Работа и мощность, затрачиваемые на резание, зависят от действующих составляющих силы резания и скорости резания.
Мощность, затрачиваемую на резание, называют эффективной мощностью. Она учитывает действие всех трех составляющих силы резания.
Поэтому можно записать:
Ne = Nz + Ny + Nx.
Если выразить силу в килоньютонах, скорость в м/мин, то мощность получим в киловаттах, подставив в формулу значения силы и скорости резания:
Nе = Рz V/1020 60 + Px S n/60 1000 1020 + Py Vy/60 1020.
В направлении силы Ру (при отсутствии вибраций) движение не совершается, а поэтому скорость и мощность равны нулю. Осевая составляющая Рх достаточно мала и мощность от ее воздействия составляет 1…2 %, поэтому в расчете эффективной мощности Px не учитывается. Отсюда получим (кВт):
Nе = Рz V/1020 60.
Знание требуемой эффективной мощности необходимо для определения возможности резания данной заготовки на данном станке, имеющем заданную мощность привода Nэ.д. С учетом коэффициента полезного действия кинематических цепей станка потребная мощность электродвигателя станка Nэ.д может быть определена по формуле
Nэ.д = Nе/.
2.5. Контрольные вопросы и задания
Какие деформации и напряжения возникают в процессе резания?
В чем заключается физическая сущность процесса резания?
Какие типы стружек при резании пластичных и хрупких материалов вы знаете?
Что такое усадка стружки?
Какие методы завивания и дробления сливной стружки вам известны?
В чем особенность физики явления наростообразования при резании материалов?
Как условия обработки влияют на высоту нароста?
В чем заключаются положительные и отрицательные стороны нароста?
Какие существуют методы борьбы с наростом?
Какая система сил действует на передней и задней поверхностях инструмента?
Как составляющие силы резания зависят от условий обработки?
Как геометрические параметры резца влияют на составляющие силы резания?
Какие методы определения сил резания вам известны?
Почему при обработке резанием возникают вибрации и шум?
Напишите эмпирические формулы для расчета составляющих силы резания.
В чем отличие работы и мощности резания от работы и мощности в физике?
