- •В.Ф. Макаров резание материалов
- •Оглавление
- •Глава 1 Кинематика процесса резания 19
- •Глава 2 Динамика процесса резания 58
- •Глава 3 Теплофизика процесса резания 159
- •Глава 4 Износ и стойкость режущего инструмента 205
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали 286
- •Глава 6 Оптимизация процесса резания 330
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием 379
- •Введение
- •Глава 1 Кинематика процесса резания
- •1.1. Основы кинематики резания
- •1.1.1. Виды движений при резании материалов
- •1.1.2. Поверхности заготовки в процессе резания
- •1.1.3. Кинематические схемы резания
- •1.2. Геометрия режущей части инструмента
- •1.2.1. Конструкция, части и поверхности токарного резца
- •1.2.2. Геометрические параметры резца (углы заточки)
- •1.2.3. Изменения углов заточки режущих инструментов при установке и в процессе резания
- •1.2.4. Формы передней поверхности резцов
- •1.3. Классификация видов обработки резанием
- •1.4. Элементы режима резания и срезаемого слоя
- •1.4.1. Элементы режима резания
- •1.4.2. Элементы срезаемого слоя
- •Остаточное сечение среза при точении
- •Площадь поперечного сечения среза при фрезеровании
- •Основное время резания
- •Контрольные вопросы и задания
- •Глава 2 Динамика процесса резания
- •2.1. Деформация и напряжения в процессе резания
- •2.1.1. Физическая сущность процесса резания
- •Некоторые сведения о пластической деформации металла
- •2.1.2. Методы изучения и оценки пластической деформации
- •2.1.3. Методы моделирования деформаций при изучении процессов резания
- •Математические зависимости
- •2.2. Процесс стружкообразования
- •2.2.1. Типы стружек при резании пластичных и хрупких материалов
- •2.2.2. Деформированное состояние зоны стружкообразования при элементной и сливной стружке
- •2.2.3. Взаимосвязь явлений стружкообразования в процессе резания
- •2.2.4. Изменение размеров и формы стружки по сравнению со срезаемым слоем. Понятие об усадке стружки
- •2.2.5. Методы завивания и дробления сливной стружки
- •2.3. Контактные явления, трение и наростообразование при резании материалов
- •2.3.1. Контактные явления и трение на передней и задней поверхностях инструмента
- •2.3.2. Процесс наростообразования
- •2.3.3. Влияние условий обработки на высоту нароста
- •2.3.4. Положительные и отрицательные свойства нароста
- •2.3.5. Методы борьбы с наростом
- •2.4. Сила резания, работа и мощность резания
- •2.4.1. Система сил, действующих на передней и задней поверхностях инструмента
- •2.4.2. Составляющие силы резания при точении
- •2.4.3. Зависимость составляющих силы резания от условий обработки
- •2.4.4. Влияние геометрических параметров резца на составляющие силы резания
- •2.4.5. Влияние степени затупления резца и смазочно-охлаждающих жидкостей на составляющие силы резания
- •2.4.6. Методы определения сил резания
- •2.4.7. Вибрации и шум при обработке резанием
- •Особенности применяемых систем вибродиагностики
- •2.4.8. Эмпирические формулы для расчета составляющих силы резания
- •2.4.9. Работа и мощность резания
- •2.5. Контрольные вопросы и задания
- •Глава 3 Теплофизика процесса резания
- •3.1. Температура резания и тепловое поле
- •3.1.1. Источники образования тепла и распределение тепла между стружкой, инструментом и деталью
- •3.1.2. Понятие о тепловом поле и температуре резания
- •3.1.3. Основные экспериментальные методы изучения тепловых явлений
- •3.1.4. Зависимость температуры резания от условий обработки
- •3.1.5. Эмпирическая формула для расчета температуры резания
- •3.1.6. Понятия об оптимальной температуре резания
- •3.2. Смазывающе-охлаждающие технологические средства
- •3.2.1. Требования, предъявляемые к смазочно-охлаждающим жидкостям
- •3.2.2. Классификация смазочно-охлаждающих технологических средств
- •3.2.3. Влияние сотс на стойкость инструментов, силы резания и качество обработанной поверхности
- •Методы подачи сож
- •3.2.4. Рекомендации по применению сотс
- •Контрольные вопросы и задания
- •Глава 4 Износ и стойкость режущего инструмента
- •4.1. Краткие сведения об инструментальных материалах
- •4.1.1. Требования, предъявляемые к инструментальным материалам
- •4.1.2. Классификация инструментальных материалов, их маркировка и применение
- •Углеродистые и легированные инструментальные стали
- •Быстрорежущие инструментальные стали
- •Металлокерамические твердые сплавы
- •Рекомендации по применению твердых сплавов
- •Минералокерамика
- •Абразивные материалы
- •Сверхтвердые инструментальные материалы
- •Монокристаллические материалы
- •4.2. Изнашивание и разрушение режущих инструментов
- •4.2.1. Напряжения в инструменте и виды износа инструмента
- •4.2.2. Физическая сущность и виды изнашивания инструментов
- •Абразивное изнашивание
- •Термический износ
- •Адгезионное изнашивание
- •Диффузионное изнашивание
- •Окислительное изнашивание
- •Хрупкий износ
- •4.3. Понятие о стойкости режущих инструментов
- •4.3.1. График износа за время работы инструмента
- •4.3.2. Период стойкости инструмента
- •4.3.3. Критерии износа-затупления инструмента
- •4.3.4. Зависимость «скорость резания – стойкость инструмента»
- •4.3.5. Характеристики размерной стойкости инструмента
- •4.3.6. Влияние скорости (температуры) резания на характеристики размерной стойкости. Зависимость стойкость–скорость (т–V)
- •4.3.7. Положение о постоянстве оптимальной температуры резания
- •4.3.8. Экономическая скорость резания и скорость резания, соответствующая максимальной производительности на данном рабочем месте
- •4.3.9. Возможные потери при выборе высоких периодов стойкости
- •4.3.10. Влияние различных факторов на скорость резания и стойкость инструмента
- •4.3.11. Номограммы для выбора режимов резания
- •4.3.12. Характер изнашивания и средние величины максимально допустимого износа инструментов
- •4.4. Контрольные вопросы и задания
- •Глава 5 Влияние условий резания на качество поверхностного слоя обработанной детали
- •5.1. Понятие о поверхностном слое, возникающем при резании
- •5.2. Основные параметры, определяющие качество поверхностного слоя
- •5.2.1. Шероховатость обработанной поверхности
- •5.2.2. Наклеп поверхностного слоя при резании металлов
- •5.2.3. Остаточные поверхностные напряжения
- •5.3. Зависимость параметров качества поверхностного слоя от условий обработки
- •5.3.1. Влияние условий обработки на шероховатость поверхности
- •5.3.2. Влияние условий обработки на наклеп поверхности
- •5.3.3. Влияние условий обработки на остаточные напряжения
- •5.4. Влияние качества поверхностного слоя на эксплуатационные свойства деталей
- •5.5. Особенности образования поверхности при чистовой лезвийной и абразивной обработке
- •5.5.1. Понятие об абразивном инструменте. Характеристики абразивного инструмента
- •5.5.2. Виды шлифования. Элементы режима резания при круглом наружном шлифовании
- •5.5.3. Физическая сущность процесса шлифования, особенности образования поверхностного слоя
- •5.5.4. Силы резания при шлифовании
- •5.5.5. Износ и стойкость абразивного инструмента
- •5.5.6. Назначение режимов резания при шлифовании
- •5.6. Контрольные вопросы и задания
- •Глава 6 Оптимизация процесса резания
- •6.1. Понятие об обрабатываемости материалов резанием
- •6.1.1. Основные параметры обрабатываемости
- •6.1.2. Выбор рациональных скоростей резания
- •6.1.3. Способы определения обрабатываемости
- •6.1.4. Методы улучшения обрабатываемости
- •6.1.5. Особенности обрабатываемости резанием различных материалов
- •6.2. Выбор и назначение оптимальных параметров режущего инструмента
- •6.3. Назначение оптимальных режимов резания различными методами
- •6.3.1. Табличный метод
- •6.3.2. Аналитический расчет оптимальных режимов резания
- •6.4. Контрольные вопросы и задания
- •Глава 7 Современные направления развития науки и практики обработки материалов резанием
- •7.1. Адаптивное управление процессом резания
- •7.2. Развитие высокоскоростного резания
- •7.3. Новые принципы резания в условиях гибкого производства
- •7.4. Гидроабразивная резка материалов
- •7.5. Контрольные вопросы и задания
- •Список литературы
- •МакароВ Владимир Федорович Резание материалов
Контрольные вопросы и задания
Дайте определение кинематическим элементам и характеристики резания при точении.
Что называется поверхностью резания, обрабатываемой и обработанной поверхностями?
Покажите на конкретном примере конструкцию и части токарного резца.
Дайте определение статической, инструментальной и кинематической системам координат.
Покажите схематично координатные плоскости в статической системе координат.
Как установка резца влияет на величины переднего, заднего углов и углов в основной плоскости?
Дайте определение элементам режима резания при точении, сверлении, фрезеровании: скорости резания, подаче, глубине резания, ширине фрезерования.
Дайте определение элементам и характеристики срезаемого слоя при точении, сверлении, фрезеровании; сечению, его формам и размерам. Что такое остаточное сечение при указанных видах обработки?
Каковы особенности классификации резания по признакам: свободное и несвободное, прямоугольное и косоугольное, однолезвийное и многолезвийное, непрерывное и прерывистое?
Глава 2 Динамика процесса резания
2.1. Деформация и напряжения в процессе резания
2.1.1. Физическая сущность процесса резания
В результате экспериментальных и теоретических исследований установлено, что превращение срезаемого слоя в стружку при резании является одной из разновидностей процесса пластической деформации материала. Основным признаком пластической деформации является необратимое изменение формы тела под действием внешних сил без нарушения сплошности деформируемого тела.
Некоторые сведения о пластической деформации металла
Различают три основных вида деформированного состояния малого объема тела.
1. Растяжение (рис. 25, а), при котором вдоль одной из трех главных осей деформации наблюдается удлинение, а вдоль двух остальных главных осей – укорочение. Если две отрицательные деформации укорочения равны между собой, то растяжение называют простым.
2. Сжатие – такая деформация, при которой вдоль одной оси происходит укорочение, а вдоль двух других осей – уширение / удлинение.
3. Сдвиг (рис. 25, б), при котором деформация вдоль одной из трех главных осей отсутствует, вдоль второй главной оси наблюдается укорочение, а вдоль третьей главной оси – равное ему удлинение.
а
б
Рис. 25. Схемы деформации чистого (а) и простого (б) сдвигов
Разновидностями сдвига являются чистый сдвиг и простой сдвиг. При чистом сдвиге (см. рис. 25, а) происходит равномерное укорочение вдоль одной оси и равномерное удлинение вдоль другой оси, перпендикулярной к первой. Квадрат ABCD превращается в конгруэнтный ромб А1В1С1D1 при неизменном объеме тела. При простом сдвиге (см. рис. 25, б) деформация заключается в смещении всех точек тела в направлении, параллельном только одной оси, на расстояние, пропорциональное расстоянию точки тела от этой оси в направлении второй оси. В результате простого сдвига квадрат ABCD превращается в равновеликий параллелограмм с теми же размерами основания и высоты, что и у исходного квадрата.
Первые два вида (растяжение и сжатие) относятся к объемному деформированному состоянию, а третий (сдвиг) – к плоскому деформированному состоянию.
Рассмотрим более подробно деформацию простого сдвига на примере перехода срезаемого слоя в стружку при металлообработке, так как при b > > а практически все перемещения срезаемого слоя происходят в одной плоскости.
Рис. 26. Напряженные состояния в начальный и конечный моменты деформации простого сдвига
Частица срезаемого слоя, находящаяся далеко от режущего инструмента, свободна от напряжений и движется по направлению к инструменту с постоянной скоростью. По мере приближения к режущему инструменту напряжения в рассматриваемой частице возрастают, и, когда они превзойдут предел упругости обрабатываемого материала, частица получает пластическое смещение и изменяет направление своего движения (рис. 26). Эти изменения происходят за время пребывания частицы в некоторой переходной пластически деформированной зоне ABCD (рис. 27, а). Поскольку в результате отделения слоя металла толщиной а и превращения его в стружку часть единого тела движется параллельно передней поверхности лезвия инструмента, а оставшаяся часть продолжает движение в прежнем направлении, то в точке, соответствующей сопряжению передней и задней поверхностей инструмента, под углом к направлению движения, называемого углом сдвига, произойдет разделение тела на стружку и обрабатываемую деталь.
Представим переходную пластически деформируемую зону в виде параллелограмма ABCD (см. рис. 27, а), а линии скольжения в ней примем за прямые. Обозначим толщину этой зоны через х, а ее сдвиг через s. Значение s соответствует расстоянию (см. рис. 25, б), на которое сдвинулась верхняя сторона квадрата относительно нижней, и называется абсолютным сдвигом. В теории пластических деформаций для характеристики интенсивности сдвига пользуются величиной е, называемой относительным сдвигом. Он равен отношению абсолютного сдвига s к толщине слоя ajc, претерпевшего этот сдвиг, т.е. е = s/x. Геометрически е равен тангенсу угла наклона стороны квадрата к оси z, т.е. е = tg (рис. 27, б).
а
б
Рис. 27. Схема определения относительного сдвига
Элемент срезаемого слоя ABCD под действием режущего клина инструмента деформируется и принимает форму параллелограмма EBCN. В треугольнике CDN (см. рис. 27, б)
(1)
Анализ формулы показывает, что для определения относительного сдвига при определенном угле необходимо знать угол сдвига. Его можно определить по длине стружки. При перемещении инструмента на Δl длина стружки будет Δlc. Из ΔАВЕ (см. рис. 27, а)
и
Отношение Δl/Δlc = Kl получило название коэффициента усадки, или укорочения стружки:
11.2
Данную формулу называют формулой И.А. Тиме. С ее помощью можно выразить угол сдвига через коэффициент Kl:
отсюда
tg
=
.
Несмотря на принятые допущения о замене зоны первичной деформации единственной плоскостью сдвига и идеализации процесса превращения срезаемого слоя в стружку, формула И.А. Тиме совершенно точно выражает связь между Kl и углом сдвига , так как отражает условие сплошности материала стружки.
Таким образом, относительный сдвиг при резании зависит от угла сдвига и переднего угла . Угол можно определить, зная а и ас, а всегда известен. Практически = 2...5. Определим, при каком относительный сдвиг будет минимальным. Для этого возьмем первую производную уравнения (1), приравняем ее к нулю и решим уравнение относительно :
Это условие справедливо при = 90° – ( – ). Тогда
=
45° +
.
Зная относительный сдвиг, можно определить скорость деформации (с–1), которая представляет собой отношение максимальной главной деформации max к ее продолжительности деф в единицу времени, т.е. Vдеф = max/деф.
В случае неравномерной деформации сдвига ее скорость, или скорость относительного сдвига, определяется как относительный сдвиг в единицу времени Vдеф = d/d.
От Vдеф зависит температура, сопровождающая процесс деформации: чем выше скорость деформации, тем меньше требуется энергии и меньше тепловыделение.
Пластические деформации материала срезаемого слоя при резании ограничиваются зоной стружкообразования. Наиболее интенсивно пластическая деформация протекает в очень узкой зоне, ширину которой для упрощения расчетов примем за прямоугольник толщиной х. Время деформации обрабатываемого металла на этом участке составит деф = х/Vc = (хKl)/V, т.е. Vдеф = V/хKl.
Скорость деформации при резании очень высока, и даже самые низкие скорости резания значительно превосходят скорости, достигаемые при испытаниях металлических образцов на удар. По экспериментальным данным, при обработке конструкционных материалов обычного качества х = 0,02...0,005 см; = 2...5; Kl = 2…4. При скорости резания 60 м/мин = 100 см/с скорость деформации Vдеф ~ ~ 4000 с–1.
Высокие скорости деформации не позволяют установить четкую границу между хрупкими и пластичными материалами, поскольку один и тот же материал в зависимости от характера напряженного состояния при резании и скорости деформации может вести себя и как хрупкий, и как пластичный. Так, например, при точении чугуна стружка может быть сливной, при обработке вязких сталей – элементной.
