- •Газы. Свойства газов
- •Газовые законы.
- •4. Электрический ток. Закон Ома
- •5. Закон Ома для полной цепи.
- •Короткое замыкание.
- •6. Первое начало (первый закон) термодинамики — это закон сохранения и превращения энергии для термодинамической системы.
- •8. Статическое электричество
- •Характеристики электрического поля:
- •Графическое изображение электрических полей.
- •9. Электромагнитные колебания. Свободные и вынужденные электрические колебания.
- •Переменный электрический ток
- •10. Конденсатор – элемент, способный накапливать электрическую энергию. Название происходит от латинского слова «condensare» — «сгущать», «уплотнять».
- •Параметры конденсатора
- •Принцип работы конденсатора: его заряд и разряд
- •Применение конденсаторов
- •11. Сверхпроводимость: история открытия и сущность явления.
- •История открытия.
- •Понятие о сверхпроводимости.
- •Классификация.
- •Принципиальные свойства сверхпроводников
- •Полное вытеснение магнитного поля - Эффект Мейснера-Оксенфельда, о котором подробно рассказывается далее.
- •Теоретическое объяснение эффекта сверхпроводимости.
- •Сверхпроводники I и II рода.
- •Вихри Абрикосова.
- •Высокотемпературная сверхпроводимость.
- •Применение сверхпроводимости.
8. Статическое электричество
Феномен статического электричества известен давно, и каждый из нас сталкивается с проявлениями его почти ежедневно. При одевании или снимании одежды из синтетического материала, контакте с экраном телевизора или компьютера зачастую возникает ощутимый электрический разряд. В современном мире эффект статического электричества получил широкое практическое применение (печатные и копировальные аппараты, окраска). Однако разряд статического электричества может привести и к трагическим последствиям.
Впервые возможности статического электричества вызывать возникновение взрыва и пожара были обнаружены в 1893 г. американцем Рихтером, который пытался улучшить процесс сухой химчистки одежды и попробовал ввести порошок магнезии в бензол, используемый в процессе чистки, для увеличения его токопроводности.
В топливной и химической индустрии проблему возникновения зарядов статического электричества начали глубоко изучать В начале 30-х гг., после нескольких взрывов на заводах компании SHELL. На морском же транспорте изучением этой проблемы занялись несколько позже, в середине 60-х гг., опять же после серии взрывов на танкерах, которые перевозили сырую нефть. Были проведены фундаментальные исследования в области возникновения зарядов статического электричества на танкерах при различных технологических операциях и определены международные требования по предотвращению образования электростатических разрядов.
Рассмотрим природу образования электростатического заряда.
Причины возникновения зарядов статического электричества. Существует три этапа, последовательно приводящих к возникновению опасности воспламенения горючих смесей при воздействии статического электричества, а именно:
• разделение заряда;
• накопление заряда;
• разряд статического электричества.
Известно, что атомы состоят из положительно заряженного ядра, вокруг которого вращаются отрицательно заряженные частицы — электроны. Сумма всех отрицательных зарядов в теле по абсолютному значению равна сумме всех положительных зарядов в нем, поэтому в целом тело электрически нейтрально и не имеет заряда.
Электроны, находящиеся на периферийных орбитах атома, могут сравнительно легко покидать свое место и переходить на орбиты атомов другого тела или вещества. Тот атом, который потеряет электроны, будет испытывать их недостаток и получит положительный заряд. Атом-же, на орбиты которого перейдет оторвавшийся электрон, будет иметь избыток электронов, а заряд его станет отрицательным. Иначе говоря, при перемещении электронов с орбиты одного атома на орбиту другого происходит перераспределение зарядов, и при этом один атом получает положительный заряд, а другой отрицательный. Такие заряженные атомы называются ионами.
При электризации тел заряды не создаются, а только разделяются: часть отрицательных зарядов переходит с одного тела на другое.
Например, при трении эбонитовой палочки о шерсть, эбонит получает отрицательный заряд, а шерсть заряжается положительно.
Перетекшие электронов происходит только в случае взаимодействия атомов с различной плотностью электронов.
Всякий раз, когда в контакт входят два неоднородных материала, на поверхности, разделяющей эти материалы, происходит разделение заряда. Эта поверхность может разделять два твердых тела, твердое тело и жидкость или две несмешивающиеся жидкости. На поверхности раздела заряд одного знака, например положительного, перемещается от материала А к материалу В таким образом, что эти материалы становятся соответственно положительно и отрицательно заряженными. Пока материалы А и В неподвижны и контактируют друг с другом, заряды находятся чрезвычайно близко друг к другу. В таком случае незначительная разность потенциалов между зарядами противоположного знака не представляет какой-либо угрозы.
Интенсивное разделение зарядов происходит в результате таких действий, как:
• прохождение потока жидкости через трубы или мелкоячеистые фильтры,
• осаждение частиц твердого тела или несмешивающейся жидкости через другую жидкость,
• выброс мелких капель или частиц из сопла,
• всплескивание или взбалтывание жидкости при ее соприкосновении с твердой поверхностью,
• сильное трение друг о друга некоторых материалов.
Когда заряды разъединяются, между ними образуется большая разность потенциалов. При этом в окружающем пространстве также происходит распределение разности потенциалов, иначе говоря, формируется электрическое поле (т. е. во время мойки танка при распылении жидкости электростатическое поле возникает во всем объеме танка).
Если в электростатическое поле поместить незаряженный проводник, то он получит примерно такой же потенциал, как и поле, в котором он находится. Более того, поле приводит в движение заряды внутри проводника, заряд одного знака притягивается полем к одному концу проводника, на другом же конце проводника формируется равный по величине заряд противоположного знака. Заряды, разделенные таким образом, называются индуцированными, они накапливаются в электростатическом поле.
Заряд может возникать и там, где не происходит непосредственного контакта между заряженными телами, а также при воздействии на материал другого заряженного тела, что вызывает формирование положительных и отрицательных ионов. Например, при прохождении грозового облака над высоким зданием или судном, в последних формируются положительные и отрицательные ионы, хотя непосредственного контакта между материалами или зарядами не было. Это приводит к тому, что одно и то же вещество или тело может нести противоположные заряды.
Вокруг заряженного тела происходит формирование электрического поля, своего рода отображение пространства вокруг заряженного тела. В двух противоположных точках электрического поля определяется разность потенциалов в вольтах. Напряженность электрвстатнческвге пвля впределяется в вольтах на метр (В/м).
В однородном электрическом поле напряженность поля определяется как разность потенциала на метр. Величина напряженности поля определяет возможность возникновения разряда. В сухом воздухе искровой электрический разряд может произойти при величине напряженности электрического поля около 3 000 000 В/м. Однако если поместить в поле заземленный проводник, то даже при слабой напряженности поля можно получить значительный электрический разряд.
Накопление заряда. Ранее разделенные заряды стремятся вновь соединиться между собой и нейтрализовать друг друга. Этот процесс известен как релаксация заряда. Если один из материалов или оба эти материала, несущие электростатический заряд, обладают низкой токопроводностыо, то повторное соединение зарядов затруднено и данный материал аккумулирует (накапливает) заряд на себе.
Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим. Свойства электрического поля: • порождается электрическим зарядом; • обнаруживается по действию на заряд; • действует на заряды с некоторой силой. |
Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях
данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до
точки определения поля.
Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем
самым не изменить создаваемое ими поле.
Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор
p = q*l называется электрическим моментом диполя.
