- •11. Понятие базы данных. Типы баз данных.
- •21. Общая схема процесса производства цифровых изображений.
- •22. Устройства ввода графической информации. Классификация. Характеристики устройств.
- •23. Графические планшеты и сканеры. Классификация. Характеристики.
- •24. Форматы графических файлов.
- •25. Компьютерная мышь и клавиатура. Классификация. Характеристики.
- •26. Цифровые фотокамеры. Принцип работы и характеристики.
- •27. Мониторы. Классификация. Принцип работы. Перспективы развития.
- •По типу экрана
- •По размерности отображения
- •Основные параметры
- •28. «Электронные чернила». Принцип работы и характеристики.
- •29. Видеокарты. Характеристика основных составляющих. Перспективы развития.
- •30. Понятие ramdaCа. Характеристики. Их влияние на работоспособность монитора, цветовой режим отображения.
- •31. Устройства вывода графической информации. Классификация и характеристики
- •32. Печатные технологии. Классификация. Принципы получения печатных
- •33. Проекторы. Классификация. Жидкокристаллические проекторы, dlp- проекторы, lcos-проекторы, светодиодные и пикопроекторы.
- •35. Примеры и обзор возможностей программ для работы с графикой.
- •36. Облачные технологии хранения и обработки данных.
- •38. Представление чисел в формате с фиксированной и плавающей точкой.
- •40. Структура операционных устройств и алгоритм выполнения операций
- •41. Правила выполнения арифметических операций над числами, представленными в формате с плавающей точкой.
- •43. (1 Страница) Способы организации памяти, в зависимости от методов поиска и размещения Информации
- •1. Адресная память
- •2.. Ассоциативная память
- •43. (2 Страница) Способы организации памяти, в зависимости от методов поиска и размещения Информации
- •3. Стековая память (магазинная)
- •44. Структура и алгоритм функционирования адресного зу.
- •45. Структура и алгоритм функционирования микропрограммного устройства
- •46. Способы повышения быстродействия микропрограммного устройства
- •Параллельная выборка микрокоманд
- •47.(1 Страница) Порядок синтеза устройств управления со схемной логикой.
- •47.(2 Страница) Порядок синтеза устройств управления со схемной логикой.
- •48. .(1 Страница) Формат команды. Классификация команд.
- •48. .(2 Страница) Формат команды. Классификация команд.
- •49. Порядок изменения структуры команды с изменением адресных полей.
- •50. Алгоритм функционирования процессора для 3-х и 2-х адресных команд .
- •Сквозной структурный контроль
- •61. Принципиальные решения начальных этапов проектирования.
- •62. Анализ требований и определение спецификаций программного обеспечения при структурном походе. Спецификации программного обеспечения при структурном подходе
- •63. Проектирование программного обеспечения при структурном подходе.
- •Использование метода пошаговой детализации для проектирования структуры программного обеспечения
- •64. Анализ требований и определение спецификаций программного обеспечения
- •65. Проектирование программного обеспечения при объектном подходе.
- •66. Гост 19 серии.
- •67. Гост 34 серии
- •68. Стандарт iso.
- •69. Диаграммы переходов состояний.
- •70. Функциональные диаграммы.
- •71. Диаграммы потоков данных.
- •72. Разработка структурной и функциональной схем.
- •73. Case технологии.
- •74. Классификация информационных систем.
- •75. Основные функциональные и эксплуатационные требования.
- •76. Разработка технического задания.
- •77. Особенность спиральной модели разработки программного обеспечения при объектном подходе. Реорганизация проекта.
- •78. Классификация пользовательских интерфейсов.
- •80. Предпроектные исследования предметной области.
- •Основные понятия idef0
- •Принципы моделирования в idef0
- •Применение idef0
- •Проблемы распределения канала
- •Статическое распределение канала в локальных и региональных сетях
- •Динамическое распределение каналов в локальных и региональных сетях Основные определения и допущения пункта темы
28. «Электронные чернила». Принцип работы и характеристики.
Электро́нная бума́га (англ. e-paper, electronic paper; также электронные чернила, англ. e-ink) — технология отображения информации, разработанная для имитации обычной печати на бумаге и основанная на явлении электрофореза. В отличие от традиционных плоских жидкокристаллических дисплеев, в которых используется просвет матрицы для формирования изображения, электронная бумага формирует изображение в отражённом свете как обычная бумага и может хранить изображение текста и графики в течение достаточно длительного времени, не потребляя при этом электрической энергии и затрачивая её только на изменение изображения. В отличие от традиционной бумаги, технология позволяет произвольно изменять записанное изображение. Электронную бумагу следует отличать от цифровой бумаги.
Электронная бумага была впервые разработана в Исследовательском Центре компании Xerox в Пало Альто (англ. Xerox’s Palo Alto Research Center) Ником Шеридоном (англ. Nick Sheridon) в 1970-х годах. Первая электронная бумага, названная Гирикон (англ. Gyricon), состояла из полиэтиленовых сфер от 20 до 100 мкм в диаметре. Каждая сфера состояла из отрицательно заряженной чёрной и положительно заряженной белой половины[4]. Все сферы помещались в прозрачный силиконовый лист, который заполнялся маслом, чтобы сферы свободно вращались. Полярность подаваемого напряжения на каждую пару электродов определяла, какой стороной повернется сфера, давая, таким образом, белый или чёрный цвет точки на дисплее[5].
Электронные чернила
В 1990-х годах Джозеф Якобсон (Joseph Jacobson) изобрел другой тип электронной бумаги. Впоследствии он основал корпорацию E Ink Corporation, которая, совместно с Philips, через два года разработала и вывела эту технологию на рынок.
Принцип действия был следующий: в микрокапсулы, заполненные окрашенным маслом, помещались электрически заряженные белые частички. В ранних версиях низлежащая проводка управляла тем, будут ли белые частички вверху капсулы (чтобы она была белой для того, кто смотрит) или внизу (смотрящий увидит цвет масла).[6] Это было фактически повторное использование уже хорошо знакомой электрофоретической (от электро- и греч. φορέω — переносить) технологии отображения, но использование капсул позволило сделать дисплей с использованием гибких пластиковых листов вместо стекла.
Преимуществом можно назвать большее время автономной работы, которое отличается в лучшую сторону по сравнению с прочими электронными устройствами с дисплеями. Экран на основе электронной бумаги потребляет энергию при изменении отображаемой информации (например, перелистывании страниц), тогда как типичный ЖК экран потребляет энергию постоянно.
Обновление E-Ink дисплея
В настоящее время дисплеи на основе электронной бумаги имеют очень большое (порядка 200 мс в 2011 году[9]) время обновления по сравнению с ЖК-дисплеями. Это не позволяет производителям использовать сложные интерактивные элементы интерфейса (анимированные меню и указатели мыши, скроллинг), которые широко распространены на КПК. Сильнее всего это сказывается на способности электронной бумаги показывать увеличенный фрагмент большого текста или изображения на маленьком экране.
Ещё одним недостатком этой технологии является подверженность экрана механическим повреждениям[10], правда это касается не всех модификаций таких экранов. Действительно, дисплеи, созданные компанией E-ink по технологиям E-ink Vizplex, E-ink Pearl, имеют в своей основе подложку из очень тонкого хрупкого стекла, однако в технологии E-ink Flex стеклянная подложка заменена пластиковой и такие экраны можно даже немного изгибать. Они гораздо менее подвержены разрушениям от ударов и деформаций, чем E-ink Vizplex, E-ink Pearl
