- •Оглавление
- •Глава I. Общая микробиология и вирусология.
- •Глава I. Общая микробиология и вирусология
- •1. Микроорганизмы как основные объекты исследования молекулярной генетики. Генетический анализ и принципы картирования генов. Понятие о генной инженерии
- •2. Факторы естественной резистентности. Физиологические защитные механизмы полости рта
- •3. Открытие микробов (а. Левенгук). Морфологический период в истории микробиологии. Исследования д.C.Самойловича, э.Дженнера, л.C.Ценковского, ф.А.Леша, п.Ф.Боровского
- •4. Роберт Кох и значение его работ для медицинской микробиологии
- •5. Микрофлора воздуха. Санитарно-гигиеническая оценка микрофлоры воздуха в лечебных учреждениях. Санитарно-бактериологическое исследование воздуха
- •6. Морфология патогенных спирохет. Классификация, методы выявления.
- •7. Методы культивирования вирусов. Типы культуры ткани. Методы выявления вирусов в культуре ткани.
- •8. Микробный симбиоз и антагонизм, методы изучения и практическое применение. Бактериотерапия, бактериопрофилактика. Колибактерин, бифидумбактерин
- •9. Репродукция вируса. Основные стадии взаимодействия вируса с клеткой хозяев. Особенности репродукции днк- и рнк-содержащих вирусов.
- •10. Питательные Среды. Требования, предъявляемые к питательным средам. Типы питательных сред.
- •12. Процесс питания у бактерий. Типы питания. Работы с.Н.Виноградского.
- •13. Систематика микроорганизмов, номенклатура микроорганизмов. Понятие о виде, разновидности, биоваре, сероваре, фаговаре. Использование новейших достижений науки для систематики микроорганизмов.
- •14. Антибиотики животного, растительного и микробного происхождения. Работы а.Флеминга, з.Ваксмана, б.П.Токина, з.В.Ермольевой, г.A.Гаузе, н.А.Красильникова и др. Механизм действия антибиотиков.
- •15. Луи Пастер-основоположник микробиологии и научной иммунологии. Его работы по сибирской язве и бешенству.
- •16.Мутации: спонтанные и индуцированные. Метод реплик. Селекция микроорганизмов и практическое применение.
- •17.Методы выделения чистых культур аэробных бактерий.
- •18. Анатоксины, реакция флоккуляции. Практическое применение анатоксинов.
- •19. Работы и.И.Мечникова в области иммунологии и микробиологии.
- •20. Латентные и хронические вирусные инфекции. Механизм вирусного персистирования. Медленные инфекции.
- •21. Морфология и ультраструктура нитчатых, дрожжевых грибов и актиномицетов. Патогенные представители. Использование грибов в народном хозяйстве и медицине.
- •22. Химический состав бактерий. Значение различных химических соединений в их жизнедеятельности.
- •23. Хламидии, общая характеристика, способы размножения. Заболевания, вызываемые ими.
- •24. Особенности генетического аппарата бактерий и вирусов. Понятие о генотипе и фенотипе. Понятие о транспозонах и инвертированных последовательностях.
- •25. Вакцинопрофилактика, типы вакцин, их получение. Адъюванты. Анатоксины и их применение.
- •26. Место вирусов в биосфере (д.И.Ивановский, л.А.Pильбер, в.М.Жданов).
- •27. Определение понятия «вирус». Классификация вирусов.
- •28. Патогенность и вирулентность. Факторы их определяющие. Генетический аспект патогенности и вирулентности. Единицы измерения вирулентности.
- •29. Методы выделения чистых культур анаэробных бактерий.
- •30. Основные методы изучения морфологии бактерий. Микроскопия и использование светового микроскопа. Методы микроскопии в световом микроскопе.
- •31. Простые и сложные методы окраски. Метод Грама и его значение.
- •32. Микрофлора полости рта, качественный и количественный состав, значение.
- •34. Трансформация, ее механизмы. Значение для науки и практики.
- •35. Распространение микробов и токсинов в организме. Фазы инфекционного процесса
- •36. История открытия фага. Природа фага. Морфология фага. Вирулентные и умеренные фаги. Взаимодействие фага с клеткой. Лизис извне и изнутри. Природа профага. Лизогения.
- •37. Отрицательные стороны антибиотикотерапии. Механизм возникновения антибиотикоустойчивости микроорганизмов. Генетические аспекты антибиотикоустойчивости.
- •38. Риккетсии. Общая характеристика, методы культивирования. Классификация патогенных риккетсий и риккетсиозов.
- •39. Инфекции. Определения понятия инфекции. Формы инфекции. Роль микроорганизма, макроорганизма и факторов внешней среды в инфекционном процессе.
- •40. Действие физических и химических факторов на бактерий, риккетсии и вирусы. Дезинфекция. Стерилизация.
- •41. Культурные ферментативные свойства бактерий, методы их изучения и применение в идентификации бактерий.
- •42. Морфология и культура вирусов. Внутриклеточные включения при вирусных заболеваниях и их диагностическое значение
- •43. Размножение бактерий, спирохет, грибов. Скорость и фазы размножения бактерий в стационарных условиях.
- •44. Дыхание бактерий. Методы культивирования и выделения чистых культур анаэробов.
- •46. Микрофлора воды. Санитарно-показательные микроорганизмы воды. Роль водного фактора в распространении инфекционных заболеваний. Определение коли-титра и коли-индекса воды.
- •47. Внехромосомные факторы наследственности (плазмиды). Факторы Col, Ent, Hly, Vir, k89, k99 и др., их значение.
- •48. Роль микробиологии в прогрессе биологии и медицины. Использование достижений микробиологии в мирных целях и в целях агрессии.
- •49. Методы микробиологическогого исследования инфекционных заболеваний. Значение правильного забора материала и его транспортировки.
- •50. Основные формы бактериальной клетки. Ультраструктура бактерий.
- •51. Токсины микроорганизмов, их свойства, получение. Измерение силы.
- •52. Изучение морфологии микроорганизмов с использованием темнопольного, фазовоконтрастного, люминесцентного и электронного микроскопов.
- •55. Капсула бактерий, споры, жгутики, методы их выявления и роль в жизни бактериальной клетки.
- •56. Факторы повышающие и понижающие вирулентность. Снижение вирулентности микроорганизмов, как метод получения вакцинных штаммов. Роль л.Пастера в этой области.
- •57. Нормальная микрофлора человека и ее значение (работы п.В.Циклинской, л.Г.Перетца и др.). Дисбактериоз. Гнотобиология и ее значение в медицине.
- •Глава II. Частная микробиология и вирусология.
- •58. Возбудители бруцеллеза. Виды и биовары бруцелл. Лабораторный диагноз. Эпидемиология, профилактика, терапия.
- •59. Возбудитель туляремии. Спектр патогенности. Микробиологический диагноз туляремии. Эпидемиология, профилактика и терапия туляремии.
- •60. Стафилококки. Роль в патологии. Токсины и ферменты патогенности. Принципы классификации. Микробиологический диагноз, фаготипирование. Эпидемиология, профилактика, специфическая терапия.
- •61. Вирус бешенства, морфология и структура вирионов, биологические свойства, патогенез заболевания. Лабораторный диагноз. Специфическая профилактика бешенства.
- •62. Гонококк. Микробиологический диагноз гонококковых инфекций. Эпидемиология, профилактика и этиотропная терапия.
- •63. Возбудитель дифтерии. Современные представления о токсинообразовании. Лабораторная диагностика. Иммунитет. Серотерапия. Активная иммунизация и проблема снижения заболеваемости дифтерий.
- •64. Протей. Свойства. Виды протеев. Этиологическая роль при гнойных и смешанных инфекциях, при пищевых токсикоинфекциях. Роль во внутрибольничных инфекциях. Лабораторный диагноз.
- •66. Возбудитель сибирской язвы. Морфология, биология, антигенные свойства. Лабораторный диагноз, эпидемиология, профилактика, этиотропная и специфическая терапия.
- •67. Возбудители возвратного тифа. Лабораторный диагноз эпидемического и эндемического возвратного тифа. Эпидемиология и профилактика. Опыты г.Н.Минха
- •69. Энтеровирусы. Вирусы есно и Коксаки, значение их в патологии человека. Методы лабораторной диагностики энтеровирусных инфекций.
- •72. Возбудитель лепры. Морфология. Микробиологический диагноз.
- •73. Pseudomonas aeruginosa – синегнойная палочка. Роль в патологии человека. Токсинообразование и патогенность. Этиология и патогенез. Лабораторный диагноз.
- •75.Энтеропатогенные кишечные палочки. Заболевания, вызываемые у детей и взрослых. Лабораторный диагноз. Профилактика и лечение
- •76. Вирус герпеса простого. Морфология и структура вирионов. Биологические свойства. Патогенез заболевания у человека.
- •78. Возбудитель сифилиса. Иммунитет. Лабораторный диагноз сифилиса. Эпидемиология и профилактика.
- •79. Вирус кори и его характеристика. Лабораторная диагностика. Эпидемиология кори, серопрофилактика, вакцинация. Проблема ликвидации кори в России и в глобальном масштабе.
- •80. Возбудитель ботулизма. Токсинообразование, типы токсина. Лабораторный диагноз, сепротерапия и серопрофилактика ботулизма.
- •81.Возбудитель дифтерии. Современные представления р токсинообразовании. Лабораторная диагностика. Иммунитет. Серотерапия. Активная иммунизация и проблема снижения заболеваемости дифтерии.
- •82. Общая характеристика семейства энтеробактерий. Кишечная палочка. Роль кишечной палочки в патологии человека.
- •83. Гемофилы. Виды и свойства. Возбудители заболеваний у человека. Лабораторная диагностика, профилактика.
- •86. Сальмонеллы – возбудители вби. Особенности, эпидемиологи. Лабораторный диагноз, профилактика.
- •87. Патогенные хламидии. Роль их в патологии человека. Патогенез заболеваний. Лабораторная диагностика. Профилактика.
- •88. Вирусы гриппа. Характер изменчивости гриппозных вирусов (дрейф, шифт). Лабораторная диагностика, эпидемиология, специфическая профилактика и терапия гриппа.
- •89. Вирусы гепатита в. Роль в патологии человека. Эпидемиология, профилактика и лабораторная диагностика вирусного гепатита в.
- •90. Вирусы гепатита с. Роль в патологии человека. Эпидемиология, профилактика и лабораторная диагностика вирусного гепатита с.
- •91. Вирусы гепатита д. Роль в патологии человека. Эпидемиология, профилактика и лаборатор-ная диагностика вирусного гепатита д.
- •92. Вирусы гепатита а. Этиология. Эпидемиология. Профилактика.
- •93. Ретровирусы, патогенные для человека. Возбудители спиДа. Особенности эпидемиологии. Профилактика.
- •94. Пневмококк. Роль пневмококков в патологи человека. Микробиологический диагноз пневмококковых инфекций. Антибиотикотерапия.
- •95. Возбудители брюшного тифа и паратифов. Патогенез, лабораторная диагностика.
- •96. Стрептококки. Токсины и ферменты патогенности. Классификация. Роль стрептококков в этиологии скарлатины и ревматизма. Микробиологический диагноз, эпидемиология, профилактика и антибиотикотерапия.
- •98. Геморрагические лихорадки, характеристика возбудителей. Географическое распространение. Геморрагическая лихорадка с почечным синдромом (глпс). Лабораторный диагноз. Профилактика.
- •100. Возбудитель эпидемического сыпного тифа и его характеристика. Переносчик и механизм заражения. Болезнь Брилля. Дифференциальный диагноз, профилактика.
- •101. Иерсении псевдотуберкулеза и энтероколита. Морфологические и физиологические свойства. Патогенность для человека и грызунов. Лабораторный диагноз, профилактика.
- •102. Арбовирусы, общие свойства, классификация. Вирусы клещевого и японского энцефалитов. Лабораторный диагноз, эпидемиология, специфическая профилактика и терапия.
- •103. Эндемические риккетсиозы. Клещевой риккетсиоз Северной Азии. Возбудители, лабораторный диагноз, эпидемиология, профилактика.
- •104. Протозойные инфекции. Эпидемиология, лабораторная диагностика. Этиотропная терапия. Профилактика.
- •105. Возбудитель столбняка, его свойства. Токсинообразование. Механизм заражения. Лабораторный диагноз, специфическая профилактика и терапия.
- •106. Аденовирусы. Морфология и структура вирионов, биологические свойства, антигенны3 состав и типы, значение в патологии человека, лабораторный диагноз, эпидемиология.
- •107. Патогенные лептоспиры, их характеристика. Микробиологический диагноз, эпидемиология, профилактика.
- •108. Пикорнавирусы, основные свойства, классификация. Вирус полиомиелита. Лабораторная диагностика. Эпидемиология. Специфическая профилактика.
- •109. Возбудители листериоза. Общая характеристика. Патогенез заболеваний. Лабораторный диагноз.
- •110. Возбудители бактериальной дизентерии. Современная классификация шигелл. Микробиологический диагноз, эпидемиология.
- •111. Менингококк. Лабораторный диагноз менингококковых инфекций. Эпидемиология, профилактика и этиотропная терапия менингококковых инфекций.
- •112. Пищевые отравления бактериального типа. Сальмонеллы - возбудители пищевых токсикоинфекций, их характеристика.
- •113. Бактерии рода Klebsiella, их свойства, роль в патологии человека. Микробиологический диагноз заболеваний, вызываемых клебсиеллами.
- •114. Основные направления бактериологического исследования крови, мокроты при заболеваниях, вызываемых условно-патогенными микроорганизмами.
- •115. Основные направления бактериологического исследования мочи.
- •Глава III. Иммунология
- •116. Реакции иммунитета и их практическое применение при бактериальных и вирусных инфекциях. Описать одну из реакций.
- •117. Реакции иммунитета и их практическое применение при бактериальных инфекциях.
- •118. Реакции иммунитета и их практическое применение при вирусных инфекциях.
- •119. Реакция агглютинации, механизм, методы постановки, применение.
- •120. Реакция агглютинации для определения антител.
- •121. Реакция агглютинации для определения антигена (возбудителя). Монорецепторные сыворотки, методы их получения.
- •122. Реакция преципитации, механизм, методы постановки, применение.
- •123. Реакция преципитации в геле для определения токсигенности микроорганизмов, механизм, методы постановки.
- •124. Реакция термопреципитации, механизм, методы постановки, практическое применение.
- •125. Реакция непрямой гемагглютинации, механизм, методы постановки, практическое применение.
- •126. Реакция связывания комплемента, методы постановки, механизм и использование ее в бактериологии
- •127. Реакция связывания комплемента, методы постановки, механизм и использование ее в вирусологии.
- •128. Опсоно-фагоцитарная реакция. Фагоцитарная активность и интенсивность. Практическое применение.
- •129. Реакции иммунитета с участием комплемента, методы их постановки и практическое применение.
- •131. Реакция нейтрализации токсина антитоксином, ее практическое применение.
- •132. Реакция лизиса, ее модификации, практическое применение.
- •133. Реакция бактериолиза, механизм, методы постановки, применении
- •134. Реакции гемагглютинации, гемадсорбции, их диагностическое значение при вирусных инфекциях.
- •135. Реакция флоккуляции. Практическое применение анатоксинов.
- •136. Реакция нейтрализации в вирусологии. Практическое применение, методы постановки.
- •137. Реакция торможения гемагглютинации, реакция торможения гемадсорбции. Практическое применение, методы постановки.
52. Изучение морфологии микроорганизмов с использованием темнопольного, фазовоконтрастного, люминесцентного и электронного микроскопов.
Темнопольная микроскопия
Микроскопия в темном поле зрения основана на следующем принципе. Лучи освещают объект не снизу, а сбоку и не попадают в глаза наблюдателя: поле зрения остается темным, а объект на его фоне оказывается светящимся. Это достигается с помощью специального конденсора (параболоид) или обычного конденсора, прикрытого в центре кружком черной бумаги.
Схема микроскопа для наблюдения в темном поле.
Препараты для темнопольной микроскопии готовят по типу «висячей» и «раздавленной» капли. При приготовлении препарата «раздавленная» капля исследуемый материал (бактериальную культуру в физиологическом растворе) наносят на предметное стекло, которое покрывают покровным стеклом. Капля материала заполняет все пространство между покровным и предметным стеклом, образуя ровный слой. Для приготовления «висячей» капли необходимо использовать специальные предметные стекла с углублением в центре и покровные стекла. На середину покровного стекла наносят исследуемый материал. Края углубления на предметном стекле смазывают вазелином, и им накрывают покровное стекло так, чтобы капля находилась против центра углубления. Затем переворачивают препарат покровным стеклом вверх. Темнопольная микроскопия используется для изучения живых неокрашенных микроорганизмов.
Фазово-контрастная микроскопия
При прохождении пучка света через неокрашенный объект изменяется лишь фаза колебания световой волны, что не воспринимается человеческим глазом. Чтобы изображение стало контрастным, необходимо превратить фазовые изменения световой волны в видимые амплитудные. Это достигается с помощью фазово-контрастного конденсора и фазового объектива
Схема фазово-контрастного микроскопа.
Фазово-контрастный конденсор представляет собой обычный объектив с револьвером и набором кольцевых диафрагм для каждого объектива. Фазовый объектив снабжен фазовой пластинкой, которую получают нанесением солей редкоземельных элементов на объектив. Изображение кольцевой диафрагмы совпадает с кольцом фазовой пластинки соответствующего объектива. Фазово-контрастная микроскопия значительно повышает контрастность объекта и используется для изучения нативных препаратов.
Люминесцентная микроскопия
Люминесцентная микроскопия основана на способности некоторых веществ под влиянием падающего на них света испускать лучи с другой (обычно большей) длиной волны (флюоресцировать). Такие вещества называют флюорохромами (акридиновый желтый, родамин и др.). Объект, обработанный флюорохромом, при освещении ультрафиолетовыми лучами приобретает яркий цвет в темном поле зрения. Основной частью люминесцентного микроскопа является осветитель, имеющий лампу ультрафиолетового цвета и систему фильтров к нему. Очень важно использование нефлуоресцентного иммерсионного масла. Люминесцентная микроскопия в практической микробиологии используется для индикации и идентификации возбудителей инфекционных заболеваний.
Схематическое
изображение флуоресцентного микроскопа:
1 - дуговая лампа; 2 - кварцевый коллектор;
3 - кювета, заполненная раствором
сернокислой меди; 4 - передняя часть
коллектора; 5 - ультрафиолетовый фильтр;
6 - призма; 7 - пластинка из уранового
стекла; 8 - окулярный фильтр, поглощающий
ультрафиолетовые
лучи.
Электронная микроскопия
Возможности оптических микроскопов ограничены слишком большой длиной волны видимого света (6000 А). Объекты, размеры которых меньше этой величины, находятся за пределами разрешающей способности светового микроскопа. В электронном микроскопе вместо световых волн используются электронные лучи, обладающие чрезвычайно малой длиной волны и высокой разрешающей способностью.
Схема трансмиссионного электронного
микроскопа.
В качестве источника электронных лучей применяют электронную пушку, основой которой служит вольфрамовая нить, нагретая электрическим током. Между вольфрамовой нитью и анодом на пути электронов находится электрическое поле высокого напряжения. Электронный поток вызывает свечение фосфоресцирующего экрана. Проходя через объект, части которого имеют различную толщину, электроны будут соответственно задерживаться, что проявится на экране участками затемнения. Объект приобретает контрастность.
Препараты для электронной микроскопии готовят на тончайших коллоидных пленках, исследуют объекты после их высушивания («нативные препараты»), напыления при помощи тяжелых металлов, ультратонких срезов метода реплик и др. С помощью электронной микроскопии можно обнаружить самые мелкие структуры, получить увеличение до 200 000 и увидеть объекты размером 0,002 мкм.
53. Распространение фагов в природе, выделение из объектов внешней среды, получение в производственных условиях, методы титрования. Практическое применение фагов.
Распространение бактериофага Бактериофаги широко распространены в природе. Почти везде, где условия обитания благоприятны для размножения бактерий и актиномицетов, удается обнаружить паразитирующие в их клетках бактериофаги. Их можно выделить из открытых полостей организма человека и животных, различных водоемов, сточных вод, из влажной, унавоженной почвы, из соответствующих культур бактерий и актиномицетов. Много бактериофагов находится в выделениях больных людей и животных, особенно в период выздоровления от инфекционных заболеваний. Так, бактериофаги против возбудителей брюшного тифа, паратифов А и Б, дизентерии, холеры можно выделить из испражнений, против гноеродных кокков - из гнойного отделяемого ран и воспалительных очагов, против туберкулезной палочки - из мокроты и т.д. Большую роль в распространении и сохранении бактериофагов в природе играют так называемые лизогенные бактерии и актиномицеты, постоянно выделяющие бактериофаги во внешнюю среду.
Выделение бактериофага проводят по следующему алгоритму. 1. Материал, их которого выделяется бактериофаг (объект внешней среды или бактериальная культура), фильтруют через бактериальный фильтр. 2. Фильтрат помещают в жидкую питательную среду, куда засевают чувствительную к выделяемому фагу бактериальную культуру. 3. После термостатирования проводят учет опыта. а. Рост бактерии свидетельствует об отсутствии в исследуемом материале искомого бактериофага. б. Отсутствие роста бактерий свидетельствует, что искомый бактериофаг в исследуемом материале присутствует. Б. Титрование бактериофага проводят или по методу Аппельмана или по методу Грациа. 1. Титрованием фага по Аппельману можно определить концентрацию бактериофага в единице объема с точностью до порядка. Для этого используется жидкая питательная среда. а. Фагосодержащий материал десятикратно разводится («титруется») в жидкой питательной среде. б. Каждое разведение засевается чувствительной к данному фагу бактериальной культурой. в. Посевы инкубируются в термостате. г. Последнее разведение фагосодержащего материала, в котором не будет роста – это и есть титр бактериофага. 2. Титрованием фага по Грациа можно определить концентрацию бактериофага в единице объема с точностью до одной фаговой корпускулы. а. Фагосодержащий материал десятикратно разводится («титруется») в полужидкой питательной среде. б. К каждому разведению добавляется чувствительная культура с таким расчетом, чтобы в отсутствие бактериофага получился рост в виде газона. в. Каждое разведение фагосодержащего материала в полужидкой среде с добавлением чувствительной культуры заливается в чашку Петри на слой плотной питательной среды, используемой в роли под-ложки. г. Посевы инкубируются в термостате. д. Низкие разведения бактериофага полностью лизируют бактерии и роста не наблюдается. По мере разведения фага появляются отдельные изолированные бляшки, каждая из которых – результат репликации одной фаговой корпускулы. Для подсчета титра бактериофага следует количество бляшек умножить на то разведение, в котором эти бляшки подсчитаны.
Технология производства и контроль бактериофагов В производственных условиях для изготовления препарата бактериофага применяются только апробированные штаммы бактериофагов и культуры соответствующих микробов, обладающих типичными морфологическими, биохимическими и серологическими свойствами. Штаммы бактериофагов должны быть музейными и рабочими. На производстве они часто называются маточными бактериофагами. Музейные производственные штаммы бактериофагов ежегодно обновляются путем выделения новых или пассажами имеющихся штаммов бактериофага через организм больного, а также адаптацией к свежевыделенным, резистентным к данному бактериофагу культурам. Маточный бактериофаг должен размножаться и пассироваться только на соответствующей культуре в жидкой питательной среде, например, брюшнотифозный бактериофаг пассируется на культуре брюшнотифозной палочки в бульоне Мартена. Рабочий маточный бактериофаг готовится из очередной серии музейного штамма бактериофага, отдельно на каждом из производственных штаммов микробов. Препарат бактериофага представляет собой фильтрат бульонной культуры соответствующих микробов, лизированных фагом. Он содержит большое количество размножившихся фагов, обладающих специфическими лизирующими свойствами. Получение бактериофага в настоящее время осуществляется в специальных аппаратах - реакторах, емкостью от 250 до 1000 л, с применением аэрации как фактора, стимулирующего развитие микроорганизмов. Для производства бактериофага берется его рабочая маточная раса и соответствующие культуры микробов. В реактор наливается жидкая питательная среда, например, бульон Мартена или Хоттингера для изготовления брюшнотифозного и дизентерийного бактериофагов с рН 7,4-7,6 и стерилизуется при температуре 110 °С в течение 40 минут. После стерилизации среда охлаждается до 39 °С и засеивается соответствующей микробной культурой и маточным бактериофагом одновременно. Для засева употребляются 18-часовые агаровые культуры, которые прибавляются из расчета 50 млн. микробных тел на 1 мл среды. Бактериофаг добавляется в количестве не более 0,3 % по отношению к объему питательной среды. Среду с засеянными в ней культурой и бактериофагом оставляют при температуре 37 °С на 6-18 часов. Бактериофаги активно размножаются внутри бактериальных клеток, увеличиваясь в количестве и вызывая их лизис, что внешне проявляется полным просветлением среды. К полученному лизату добавляется в качестве консерванта хинозол (0,01 %) или фенол (0,25 %) и не позже чем через 2 часа после этого содержимое реактора фильтруется через бактериальные фильтры (асбестовые пластины, свечи Шамбеолена или свечи ГИКИ соответствующей пористости) для удаления оставшихся микробных клеток. Полученный препарат-бактериофаг должен иметь вид, совершенно прозрачной жидкости желтого цвета большей или меньшей интенсивности. Он проходит контроль на стерильность, безвредность и литическую активность, т.е. вирулентность.
Бактериофаг широко применяется для диагностики, профилактики и лечения ряда инфекционных заболеваний бактериальной этиологии - дизентерии, брюшного тифа, холеры, чумы, геморрагической септицемии, стафилококковых, стрептококковых и анаэробных инфекций и др. В связи с его высокой специфичностью он применяется также как диагностический препарат для идентификации бактериальных культур в медицинской, ветеринарной, технической микробиологии и фитопатологии. Метод фаготипажа, основанный на исключительной специфичности определенных штаммов бактериофага, позволил распределить на фаготипы ряд штаммов бактерий, которые неотличимы друг от друга по другим признакам. Фаготипаж с успехом применяется при идентификации бактерий брюшного тифа, сальмонелл, стафилококков и ряда других бактерий. Этот метод дает возможность эпидемиологу точно проследить за цепочкой заразных заболеваний и определить источник инфекции (бациллоноситель, больной). Известное диагностическое значение для клиники имеет выделение бактериофага из испражнений больного при некоторых кишечных инфекциях, в особенности при дизентерии. Важное значение имеет бактериофаг для быстрого обнаружения очень небольших количеств патогенных бактерий во внешней среде путем определения нарастания титра специфического бактериофага. Бактериофаг применяется и для борьбы с бактериальными вредителями различных технических брожений и в производстве ферментов, продуцируемых бактериальными культурами. В то же время бактериофаг, заражая культуры микробов, является опасным вредителем денных производственных штаммов микроорганизмов (вакцинных, возбудителей молочнокислого, ацетонобутилового и некоторых других брожений, продуцентов антибиотиков), вызывая серьезные нарушения технологического процесса. Бактериофаг - один из наиболее мощных факторов изменчивости бактерий и актиномицетов. Он играет определенную роль в самоочищении воды и почвы.
54. Конъюгация, ее механизм. Фактор фертильности F+, Hfr, F у бактерий.
Конъюгация – процесс генетического обмена, сопровождающийся переносом генетической информации от клетки донора к клетке-реципиенту, который осуществляется при непосредственном контакте клеток между собой.
Помимо конъюгации, передача генетического материала у бактерий может осуществляться также с помощью трансформации и трансдукции
Конъюгация бактерий. F-фактор бактерии. Биологическая значимость этого процесса стала проясняться после внедрения в медицинскую практику антибиотиков. Устойчивость к антибиотикам можно получить в результате мутации, что происходит один раз на каждые 106 клеточных делений. Однако, однажды изменившись, генетическая информация может быстро распространяться среди сходных бактерий благодаря конъюгации, поскольку каждая третья из близкородственных бактерий способна именно к этому типу генетического переноса. Для реализации процесса необходим F-фактор — плазмида, кодирующая информацию, необходимую для конъюгации. Конъюгация требует наличия двух типов клеток: доноров (F+), обладающих F-фактором, и реципиентов (F-), не обладающих им. При скрещивании клеток F- и F+ фактор фертильности передаётся с частотой, близкой к 100%. Фактор переноса содержит гены специальных и необходимых при конъюгации структур — F-пилей и ряд других генов, вовлечённых в процесс взаимодействия с F--клетками.
Первый этап конъюгации - прикрепление клетки-донора к реципиенту с помощью F-пилей. Затем между клетками формируется конъюгационный мостик, через который передаётся F-фактор, а также и другие плазмиды, автономно пребывающие в цитоплазме донора. При попадании F-фактора в реципиентную клетку она становится F+ и приобретает способность передавать фактор фертильности другим F--клеткам. Подобный механизм обеспечивает приобретение популяционно. устойчивости к антибактериальным агентам. В популяции клеток, содержащих F-плазмиду, только те, в которых она интегрирована в бактериальную хромосому (Hft+-клетки), способны быть донорами хромосомной ДНК. При перенос генетического материала бактериальная ДНК реплицируется, начиная от места включения F-фактора, одна цепь ДНК переносится в реципиентную F'-клетку двигаясь 5'-концом вперёд тогда как другая остаётся в Hfr+-клетке, то есть донор сохраняет своё генетическое постоянство. После начала конъюгации хромосомный материал переносится, начиная от генов, близких к начальной точке транспорта. В бактерии-реципиенты обычно попадают первые из переносимых генов, размер которых зависит от времени, в течение которого проходила конъюгация, и очень редко — все гены. Позже всех переносится участок плазмиды, содержащий ген переноса кодирующий F-пили. Поскольку полная трансмиссия — явление редкое, реципиентная клетка при Hfr-конъюгации обычно остаётся F-. Вслед за процессом переноса в клетке-реципиенте происходит гомологичная рекомбинация между донорской ДНК и собственной ДНК реципиента. Процесс конъюгации может происходить только при соблюдении ряда условий.
• На поверхности реципиентных бактерий должны быть рецепторы пилей, имеющие существенное сродство ( к F-пилям, что позволяет образовать стабильную связь между пилями и рецепторами. • Для эффективной конъюгации у F-фактора должна быть точка начала репликации, распознаваемая репликативными системами хозяина. • Эффективность Hfr-конъюгации зависит от величины гомологии ДНК. Перенос негомологичного хромосомного материала донора не приведёт к его интеграции с ДНК реципиента.
ФЕРТИЛЬНОСТИ ФАКТОР
плазмида, контролирующая способность бактерии к конъюгации. Наличие Ф. ф. придаёт бактериальнойклетке свойства донора (мужская клетка), отсутствие свойства реципиента (женская клетка). Как и некоторые другие плазмиды, F-фактор может находиться либо в автономномсостоянии (в цитоплазме клетки), либо в интегрированном (в составе хромосомы бактерии). В первом случаепри конъюгации передаётся лишь одна плазми да, во втором случае с высокой вероятностьюосуществляется перенос хромосомы донора в клетку реципиента, сопровождаемый рекомбинацией иприводящи к включению генов донора в хромосому реципиента. Штаммы, содержащие Ф. ф. винтегрированном состоянии, получили назв. Нfr (от англ. high frequency of recombination высокая частотарекомбинации). Гены Ф. ф., придающие клетке свойства донора, ранее нас. половым фактором,обозначаются как tra-гены (от англ. transfer — переносить). Помимо F-фактора к Ф. ф. относят такжеколициногенные факторы (Col-факторы), факторы резистентности (R-факторы) и нек-рые др.
