- •Влияние примесей в сырье
- •2.Мельница сухого самоизмельчения (мсс) «Аэрофол»
- •2.Способы транспортировки сырья на завод
- •1. Усреднительные склады сырья и угля
- •2. Весовые дозаторы
- •13.1.1. Влияние клинкерного пыления на показатели работы вращающейся печи
- •13.1.2. Основные причины клинкерного пыления
- •13.1.3. Влияние процесса обжига на клинкерное пыление
- •Основные рекомендации
- •2. Питатели дробилок
- •Щековая дробилка Конусная дробилка Валково-зубчатая дробилка
- •2. Роль частоты вращения мельницы
- •3. Бронефутеровка мельницы
- •4. Межкамерные перегородки мельниц
- •Влияние положения зоны спекания в печи
- •Влияние условий сжигания топлива
- •Влияние режима охлаждения
- •Влияние режима охлаждения
- •10.1 Печи мокрого способа производства
- •10.1.1. Устройство и принцип работы вращающейся печи
- •10.2. Печные системы сухого способа производства
- •10.2 1. Устройство и принцип работы печи с циклонными теплообменниками
- •10.2.2. Печь с запечным декарбонизатором
- •2. Весовые дозаторы
- •12.4. Дробилки клинкерные
- •12.4.1.Молотковая дробилка
- •Многовалковая зубчатая дробилка
- •1.Дробилки с использованием давления
- •Щековая дробилка
- •Основные параметры щековой дробилки
- •Конусная дробилка
- •Валково-зубчатая дробилка
- •Основные параметры валково-зубчатой дробилки
- •2. Дробилки ударного действия
- •Основные параметры двухроторной молотковой дробилки
- •Дробилки ударно-отражательного действия
- •Комбинированная двухроторная ударно-отражательная дробилка
- •Основные параметры комбинированной двухроторной ударно-отражательной дробилки
- •Ударно-валковые дробилки
- •Параметры однороторной ударно-валковой дробилки
- •Параметры двухроторной ударно-валковой дробилки
- •15.1. Применение минерального техногенного сырья
- •1) Отношением содержания SiО2 к содержанию а12о3;
- •Наличием примесей МgО, sо3, r2o, p2o5, TiO2, Cr2o3 и Cl-.
- •Механизм образования колец во вращающейся печи
- •13.2.1. Кольца в печах мокрого способа производства
- •13.2.1.1Шламовые кольца, причины образования и способы предотвращения
- •13.2.1.2. Шламово-солевые кольца, причины образования и способы предотвращения
- •Снижения водорастворимых солей в зоне сушки;
- •Навески рациональной цепной завесы.
- •Удельная поверхность и средний размер частиц образцов цементов с минеральными добавками
- •13.1.1. Влияние клинкерного пыления на показатели работы вращающейся печи
- •13.1.2. Основные причины клинкерного пыления
- •19.3.1.Приготовление пылевого шлама
- •Свойства отдельных фаз (минералов)
- •2. Оксидный состав
- •2. Модульные характеристики клинкера
- •10.2.4.1. Циклонные теплообменники с пониженным сопротивлением
- •10.2.4.2. Влияние степени очистки циклонов на расход тепла
- •10.2.4.3. Влияние провалов материала и подсосов холодного воздуха на расход тепла
- •Система питания печей сухого способа сырьевой мукой
- •Материальный и тепловой балансы печной системы сухого способа
- •10.2.7. Процессы в печных системах сухого способа
- •2. Роль частоты вращения мельницы
- •11.2. Кладка огнеупорной футеровки
- •Способы повышения стойкости футеровки
- •9.2.1.1. Схемы подготовки форсуночного топлива
- •10.1.3.1. Физико-химические процессы в печи
- •Основные физико-химические процессы в технологических зонах
- •10.1.3.2. Физико-химические процессы в присутствии щелочесодержащих соединений
- •10.1.3.3. Тепловые процессы в печи мокрого способа
- •Барабанный холодильник
- •Колосниковый холодильник
- •18.2. Остановка печи мокрого способа
- •18.2.1.Остановка с выработкой всего материала из печи
- •18.2.2.Остановка печи с материалом
- •Разогрев печи перед подачей сырья
- •Разогрев печи после подачи сырья
- •Удельная поверхность и средний размер частиц образцов цементов с минеральными добавками
- •10.2.2. Печь с запечным декарбонизатором
- •Свойства отдельных фаз (минералов)
- •2. Оксидный состав
- •2. Модульные характеристики клинкера
- •.1.1. Оптимальная тонкость помола цемента
- •21.1.2. Влияние свойств материалов на процесс помола
- •12.3.2.2. Принцип работы колосниковой решетки
- •Теплообмен в печи
- •Задачи оптимизации и взаимосвязь отдельных параметров зада ч и
- •3) Качества клинкера:
- •5) Пылеуноса……………………... Пу, %;
- •Зависимости
- •18.2.2.Остановка печи с материалом
- •4. Межкамерные перегородки мельниц
- •Основные параметры двухроторной молотковой дробилки
- •Зада ч и
- •3) Качества клинкера:
- •5) Пылеуноса……………………... Пу, %;
- •Зависимости
- •Характеристика печной пыли
- •19.2. Способы использования пыли из электрофильтров
- •19.3. Обжиг пыли в отдельной печи
- •13.2. Кольце- и настылеобразование в печных системах
- •13.2.1. Кольца в печах мокрого способа производства
- •13.2.1.1Шламовые кольца, причины образования и способы предотвращения
- •13.2.1.2. Шламово-солевые кольца, причины образования и способы предотвращения
- •Снижения водорастворимых солей в зоне сушки;
- •Навески рациональной цепной завесы.
- •Материально-солевые кольца, причины образования и способы предотвращения
- •Низкоосновные кольца, причины образования и способы предотвращения
- •Клинкерные кольца, причины образования и способы предотвращения
- •Механизм образования колец во вращающейся печи
- •13.2.3. Настыли в теплообменниках сухого способа
- •Химический и фазовый составы настылей
- •10.1.1. Устройство и принцип работы вращающейся печи
- •Устройство и принцип работы печи с циклонными теплообменниками
- •10.2.2. Печь с запечным декарбонизатором
- •10.2.3. Работа печных систем с декарбонизаторами
- •10.2.4. Оптимизация работы циклонных теплообменников
- •10.2.4.1. Циклонные теплообменники с пониженным сопротивлением
- •Статические сепараторы
- •Динамические сепараторы
- •Осадительные циклоны
- •2.Способы транспортировки сырья на завод
- •Твердое топливо
- •Жидкое топливо
- •Газообразное топливо
- •Характеристика природного газа
- •Основные физико-химические процессы в технологических зонах
- •10.1.3.2. Физико-химические процессы в присутствии щелочесодержащих соединений
- •Холодильник pyrofloor
- •12.3.2.2. Принцип работы колосниковой решетки
- •Снижения водорастворимых солей в зоне сушки;
- •Навески рациональной цепной завесы.
- •1) Отношением содержания SiО2 к содержанию а12о3;
- •Наличием примесей МgО, sо3, r2o, p2o5, TiO2, Cr2o3 и Cl-.
- •Влияние минералогического состава сырья
- •Влияние двухвалентного железа в сырье
- •10.2.4.2. Влияние степени очистки циклонов на расход тепла
- •10.2.4.3. Влияние провалов материала и подсосов холодного воздуха на расход тепла
- •Способы характеристики цепных завес
- •Технологическая схема II
- •Химический и фазовый составы настылей
- •Свойства отдельных фаз (минералов)
- •2. Оксидный состав
- •2. Модульные характеристики клинкера
- •Расход тепла на обжиг клинкера
- •Другие виды добавок для бетонов и растворов
- •Влияние состава и свойств сырьевой смеси на активность клинкера
- •Влияние модульной характеристики сырьевой смеси
- •Влияние минералогического состава сырья
- •Влияние двухвалентного железа в сырье
- •10.2.7. Процессы в печных системах сухого способа
- •13.2.3. Настыли в теплообменниках сухого способа
- •2. Питатели дробилок
- •13.1. Нарушение процесса грануляции клинкера в зоне спекания
Статические сепараторы
В настоящее время используются статические сепараторы двух конструкций; V - cenapamop и проходной сепаратор (рис. 7.16, 7.17). Устройство и принцип работы V - сепаратора. Сырье с размером кусков до 50 мм и влажностью около 5% поступает в сепаратор через верхнее загрузочное отверстие на ступенчатую колосниковую решетку. Между колосниками подается сушильный агент с температурой около 280 0С. Фракция материала с размером частиц до 3 мм и температурой ~100 0С через сепарирующие каналы выносится газовым потоком, а более крупная фракция удаляется через нижнее выходное отверстие.
При применении V- сепаратора в схеме помола с роллер-прессом при движении по ступенчатой колосниковой решетке происходит дезагломерация спрессованного в роллер-прессе «коржа». В сепараторе осуществляется также сушка сырьевой смеси до влажности ~ 1%.
Статический проходной сепаратор. Устройство и принцип работы показаны на рис. 7.17. Отделение крупной фракции в сепараторе осуществляется в две стадии. На первой стадии при соударении материально-газового потока с нижней наружной частью отбойного конуса происходит отражение крупных частиц в кольцевой карман, расположенный между корпусом сепаратора и входным трубопроводом. На второй стадии происходит разделение фракций центробежной силой, создаваемой завихрением потока во внутреннем конусе. Путем изменения угла поворота регулирующих створок (жалюзи) можно изменять крупность выходящей фракции (тонкость помола). Радиально направленные лопатки обеспечивают выход грубого продукта, а тангенциально - мелкого.
Динамические сепараторы
Динамические сепараторы разделяются на центробежные, сепараторы с выносными циклонами и ротационные. В последнее время используются в основном последние две модификации. Причем они применяются как при помоле сырья, так и цемента.
Сепаратор динамический с выносными циклонами представлен на рис. 7.18. Сепаратор состоит из корпуса, вращающегося диска, вентилятора и осадительных циклонов. Материал подается на вращающийся диск, с которого он сбрасывается в восходящий воздушный поток, создаваемый вентилятором.
Мелкие частицы увлекаются потоком и затем осаждаются в циклонах, а крупная фракция выпадает из потока вниз и выгружается через конусную часть сепаратора. Тонкость помола готового продукта регулируется скоростью воздушного потока, создаваемого вентилятором. При увеличении скорости увеличивается крупность материала, выносимого и осаждаемого в циклонах.
Динамический ротационный сепаратор служит для разделения крупной и мелкой готовых фракций материала (рис. 7.19). Он состоит из корпуса, вращающегося ротора и направляющих отбойных створок. Рециркуляционный воздушный поток через створки, ротор сепаратора и циклон-осадитель создается вентилятором.
Вследствие движения воздушного потока и вращения ротора на частицу материала воздействуют сила воздушного потока и сила удара лопаткой ротора. Под воздействием этих сил крупная частица движется на внешнюю сторону к створкам, и, ударяясь о них, опускается вниз в качестве крупки. Мелкая частица увлекается газовым потоком во внутрь ротора и далее направляется в циклон, где выделяется в готовый продукт. Для получения более тонкомолотого материала следует увеличить частоту вращения ротора.
