Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_otvety.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
635.02 Кб
Скачать

19. Сила Ампера. Сила Лоренца. Движение заряженных частиц в магнитном поле.

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sin

I - сила тока в проводнике; B - модуль вектора индукции магнитного поля; L - длина проводника, находящегося в магнитном поле;  - угол между вектором магнитного поля инаправлением тока в проводнике.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Максимальная сила Ампера равна:

                                                                       F = I·L·B

Ей соответствует 

Направление силы Ампера определяется по правилу левой руки

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Сила Лоренца определяется соотношением:

Fл = q·V·B·sin

где q - величина движущегося заряда; V - модуль его скорости;  B - модуль вектора индукции магнитного поля;  - угол между вектором скорости заряда и вектором магнитной индукции

В случае, если заряженная частица движется в магнитном поле со скоростью v, которая перпендикулярна вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и перпендикулярна к траектории частицы. По второму закону Ньютона, сила Лоренца создает центростремительное ускорение. Значит, что частица будет двигаться по окружности, радиус r которой находится из условия QvB=mv2/r , следовательно   (1)  Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,    Подствавив (1), получим   (2)  т. е. период вращения частицы в однородном магнитном поле задается только величиной, которая обратна удельному заряду (Q/m) частицы, и магнитной индукцией поля, но при этом не зависит от ее скорости (при v<<c). На этом соображении основано действие циклических ускорителей заряженных частиц.  20. Работа при перемещении проводника и контура в магнитном поле. Энергия магнитного поля

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

                                      Wм = LI2/ 2

 

Формула очень похожа на формулу для кинетической энергии, роль массы m выполняет индуктивность L, а скорости соответствует сила тока I.

21. Виды магнетиков. Пара- и диамагнетики. Ферромагнетики. Магнитный гистерезис

Виды магнетиков

1. Магнетики с линейной зависимостью  :

1.1) парамагнетики  ,

1.2) диамагнетики  ;

для а) и б) значение   - мало по модулю,   - близко к 1.

2. Ферромагнетики.

Это магнетики с нелинейной зависимостью   зависит от предыстории и   является функцией напряженности; существует гистерезис.

 и может достигать высоких значений по сравнению с пара- и диамагнетиками.

Первые два типа веществ 1.1 и 1.2 обладают слабыми магнитными свойствами, а ферромагнетики – сильными.

Диамагнетизм (от греч. dia – расхождение и магнетизм) - свойство веществ намагничиваться навстречу приложенному магнитному полю.

      Диамагнетиками называются вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т.к. магнитные моменты всех электронов атома взаимно скомпенсированы (например инертные газы, водород, азот, NaCl и др.).

      Вектор намагниченности диамагнетика равен:

где n0 – концентрация атомов,    – магнитная постоянная,    –магнитная восприимчивость среды.

Парамагнетизм (от греч. para – возле, рядом и магнетизм) - свойство веществ во внешнем магнитном поле намагничиваться в направлении этого поля, поэтому внутри парамагнетика к действию внешнего поля прибавляется действие наведенного внутреннего поля.

      Парамагнетиками называются вещества, атомы которых имеют, в отсутствие внешнего магнитного поля, отличный от нуля магнитный момент   .

Ферромагнетики - это вещества, обладающие спонтанной намагниченностью, то есть они сохраняют намагниченность при отсутствии внешнего магнитного поля.

К ферромагнетикам относятся, например, кристаллы железа, никеля, кобольта.

Магнитный гистерезис наблюдается в магнитоупорядоченных веществах (в определенном интервале температур), например в ферромагнетиках, обычно разбитых на домены  области спонтанной (самопроизвольной) намагниченности, у которых величина намагниченности (магнитный момент единицы объема) одинакова, но направления различны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]