- •1.Основные требования к средствам проведения вычислительного эксперимента.
- •2.Типы эл/механических генераторов, возможных к использованию в составе автономных энергетических установок. Коммутаторный генератор с безобмоточным ротором.
- •Темпы и закономерности потребления эн/ресурсов.
- •Методы и средства измерения t-ры эл/установок и устройств
- •5.Основные принципы оперативно-диспетчерского управления в электроэнергетике
- •6. Испытание обмоток повышенным напряжением промышленной частоты
- •7. Применение искусственных нейронных сетей в задачах обнаружения «плохих данных»
- •8.Цели математического, имитационного и схемотехнического моделирования
- •9. Перспективы применения мгд генераторов в составе автономных энергетических установок
- •10.Возобновляемые и невозобновляемые энергетические ресурсы.
- •12. Иерархическая система оперативного диспетчерского управления еэс России
- •13. Методика проведения испытаний и измерений параметров силовых транс..
- •14. Алгоритмы оценивания состояния при управлении ээс.
- •15. Функциональная схема электропривода постоянного тока.
- •16. Устройство и принцип действия турбореактивного двигателя автономной энергетической установки. Типы газотурбинных двигателей.
- •17. Мировой опыт энергосбережения
- •18. Производство ремонтных работ и их механизация.
- •19. Задачи, решаемые асду в реальном времени.
- •20. Правила дефектации при ремонте электрооборудования.
- •21. Вероятностная постановка расчета режима ээс.
- •1. Вектор исходных данных образует базис;
- •2. Вектор исходных данных избыточен;
- •3. Исходных данных не хватает.
- •22. Четыре основных положения структурного моделирования динамических систем.
- •23. Перспективы использования ядерных воздушно-реактивных двигателей для автономных энергетических установок
- •24. Современное состояние энергетики России. Стратегия развития отечественной энергетики.
- •25. Тепловые режимы работы трансформаторов и турбогенераторов.
- •26. 3Адачи, решаемые асду вне реального времени.
- •27. Планы-графики оперативного и технического обслуживания электрооборудования.
- •28.Моделирование установившихся режимов в нечетко определенных условиях.
- •29.Наиболее используемые классы динамических элементов и их характеристики.
- •30.Процессы в камере сгорания турбореактивного двигателя автономной энергетической установки
- •31.Основы государственного управления энергосбережением Согласно 28-фз «Об энергосбережении»:
- •32. Особенности конструкций гидрогенераторов и синхронных компенасаторов
- •33.Взаимосвязь задач текущего планирования режимов работы энергосистем и их оперативного управления
- •34 Плановые мероприятия по выводу оборудования в текущий или капитальный ремонт
- •35. Представление электрических нагрузок ээс гармоническими составляющими ряда Фурье
- •37. Уравнение динамического равновесия ротора турбореактивного двигателя автономной энергетической установки при запуске. Моменты действующие на вал двигателя при запуске.
- •38. Перспективы энергосбережения в России. Энергетическая стратегия России до 2020 года.
- •39. Системы охлаждения электрических машин
- •40. Управление нагрузкой энергосистемы.
- •41. Вывод в ремонт и ввод в работу из ремонта линий электропередачи.
- •42. Модели авторегрессии
- •43. Уровни иерархии концептуальных моделей.
- •44. Структурная схема системы запуска турбореактивного двигателя автономной энергетической установки со стартер - генератором постоянного тока смешанного возбуждения.
- •45. Федеральные законы, постановления правительства, указы президента в области энергосберегающей политики.
- •46. Обслуживание щеточных аппаратов.
- •48. Вывод в ремонт и ввод в работу из ремонта системы шин.
- •49. Назначение задачи прогнозирования при планировании электроэнергетических режимов.
- •1. Долгосрочный прогноз;
- •2. Краткосрочный;
- •3. Оперативный;
- •50. Что такое алгоритмический базис?
- •51. Основные типы и характеристики стартер-генераторов автономных энергетических установок с газотурбинным приводом.
- •52.Перспективы использования нетрадиционных источников энергии.
- •53. Ремонт статора и ротора генератора
- •54. Алгоритмы апостериорного анализа режима электроэнергетической системы
- •55. Вывод в ремонт и ввод в работу из ремонта выключателей.
- •56. Метод экспоненциального сглаживания.
- •57. Система линейных дифференциальных уравнений для двигателя постоянного тока.
- •58. Способы форсировки оборотов стартер-генераторов постоянного тока смешанного возбуждения при запуске турбореактивного двигателя автономной энергетической установки.
- •59. Нетрадиционная энергетика и ее характеристика. Ветроэнергетика.
- •60. Вибрация электрических машин и ее устранение.
- •61. Схема обработки информации при управлении электроэнергетической системой
- •62. Вывод в ремонт и ввод в работу из ремонта трансформатора
- •63. Разложение Фурье
- •64. Типовые функциональные блоки для саэп
- •65. Программные механизмы в системах запуска турбореактивных двигателей энергетических установок.
- •66. Геотермальная энергия. Солнечная энергия.
- •67. Обслуживание электродвигателей, надзор и уход за ними.
- •68. Виды неопределенности информации о режимных параметрах электроэнергетической системы.
- •69. Эксплуатация и ремонт разъединителей, отделителей и короткозамыкателей
- •70. Требования к методам прогнозирования и их программной реализации
- •71. Принципы формирования выходных величин модели двигателя постоянного тока
- •72. Особенности электрической системы запуска турбореактивного двигателя автономной энергетической установки со стартер-генератором постоянного тока параллельного возбуждения
- •73. Малая гидроэнергетика. Биоэнергетика.
- •74. Ремонт электродвигателей.
- •75. Информационные технологии в диспетчерском управлении
- •77. Идентификация моделей, используемых при оценивании состояния ээс.
- •78. Как можно представить узел комплексной нагрузки в расчетах режимов эл.Системы?
- •79. Механическая характеристика стартер-генератора постоянного тока параллельного возбуждения в условиях стабилизации потребляемого тока.
- •80. Коммерческие потери электроэнергии в электрических сетях.
- •81 . Эксплуатация и ремонт опор воздушных линий.
- •82. Технологическое обеспечение оао «со еэс» работы оптовых рынков. *
- •83. Содержание пуско-наладочных работ.
- •84. Статические и динамические характеристики и формы их выражения.
- •Связь между вопросами обеспечения устойчивости энергосистемы и надежности электроснабжения потребителей.
- •Регулятор тока в системе запуска турбореактивного двигателя автономной энергетической установки со стартер-генератором постоянного тока параллельного возбуждения.
- •Распределение небаланса в электрических сетях.
- •Средства защиты воздушных линий от грозовых перенапряжений.
- •Группы информационных потоков и определение их качества при управлении энергосистемой.
- •Организация электроремонтного производства и структура электроремонтного предприятия.
- •91. Линеаризация уравнений элементов системы.
- •92. Основные допущения, принимаемые при изучении электромеханических переходных процессов
- •93. Тахогенератор постоянного тока в системе управления запуском турбореактивного двигателя автономной энергетической установки. Выходная характеристика тахогенератора.
- •94. Разработка мероприятий по снижению потерь электроэнергии в электрических сетях
- •95. Меры борьбы с гололедом и вибрацией проводов и тросов
- •96. Основные задачи и функции оао «со еэс» на рынке электроэнергии, рынке мощности, рынке системных услуг
- •98. Преобразование Лапласа в применении к теории автоматического регулирования.
- •99. Что понимают под математической моделью электроэнергетической системы?
- •100. Низковольтная система зажигания малоразмерного турбореактивного двигателя автономной энергетической установки.
- •101. Снижение вредного воздействия энергетических процессов на окружающую среду.
- •102. Аккумуляторные батареи и их обслуживание.
- •103. Нормативно-правовая база и регламентирующие документы при управлении энергосистемами.
- •104. Содержание и порядок проведения осмотров и профилактических проверок оборудования.
- •105. Передаточная функция, переходная функция (временная характеристика).
- •106. Что понимается под нарушением устойчивости электроэнергетической системы? Причины и последствия системных аварий.
- •107. Высоковольтная емкостная система зажигания автономной энергетической установки с газотурбинным приводом
- •108. Влияние качества электрической энергии на энергосбережение
- •109. Обслуживание устройств рза
- •110. Характеристика единой энергосистемы России и ее асду
- •110. Характеристика еэс России и ее асду.
- •111. Выбор типов защиты для электродвигателей.
- •112. Частотные характеристики.
- •113. Влияние изменения напряжения и частоты на работу синхронного и асинхронного двигателей.
- •114. Двухроторный турбореактивный двигатель автономной энергетической установки. Пусковая характеристика камеры сгорания.
- •115.Влияние режимов работы электрооборудования на энергосбережение.
- •116. Основные требования к ру и задачи их эксплуатации.
- •111Equation Chapter 1 Section 1 117. Алгоритмы оценивания состояния при управлении ээс
- •118. Расчеты при замене обмоток транс., поверочный расчет параметров хх и кз
- •119. Колебательное звено системы регулирования
- •120. Влияние несимметрии и несинусоидальности питающего напряжения на работу двигателей.
- •Влияние несинусоидальности напряжения на работу электрооборудования:
- •121. Структурная схема системы запуска турбореактивного двигателя автономной энергетической установки со стартер-генератором параллельного возбуждения.
- •122. Экономия энергии на вспомогательные нужды промышленного предприятия.
- •123. Масляные выключатели, эксплуатация и ремонт.
- •133. Дифференцирующие звенья систем регулирования.
- •131. Понятия о системах управления и регулирования.
- •134. Методы, используемые при расчетах динамической устойчивости.
- •135. Основные силовые схемы газотурбинных установок энергетического назначения
- •136. Виды энергетического обследования предприятий
- •137. Сборка транс. После ремонта.
- •138. Регуляторы с замкнутой и разомкнутой цепью воздействия
- •139. Расчет магнитной цепи и выбор эл.Маг. Нагрузок транс..
- •140. Интегро-дифференцирующее звено системы регулирования.
- •141. Что называют запасом стат. Устойчивости по мощности, по напряжению?
- •142. Принцип расчета длител. Этапов запуска турбореакт. Двиг. Энергетической установки.
- •143. Программы энергетического обследования.
- •144. Испытание транс. После ремонта.
- •146. Перерасчет двигателей на другое напряжение питания, частоту питающей сети и частоту вращения.
- •147. Запаздывающее звено системы регулирования
- •150. Этапы энергетических обследований
- •151.Эксплуатация электромеханических преобразователей и пускорегулирующей аппаратуры.
- •152. Понятие о функциональных элементах и динамических звеньях систем автоматического регулирования.
- •153. Ремонт токопроводящих деталей, дугогасящих камер и механических деталей пускорегулирующей аппаратуры.
- •154.Понятие об устойчивости системы автоматического регулирования.
- •156. Принципы построения емкостных и индуктивных накопителей энергии - транс. Мощности.
- •157. Техническое обеспечение энергоаудита.
- •158. Ремонт контактных колец, щеткодержателей и коллекторов.
- •159. Статическое и астатическое регулирование.
- •160. Сборка эмп и пра и послеремонтные испытания.
- •161. Критерий устойчивости Вышнеградского.
- •162. Уравнения и модель электромеханического преобразования энергии в дпт независимого возбуждения.
- •163. Бесконтактный синхронный генератор с вращающимся выпрямителем; регулирование напряжения.
- •164. Типы энергетических балансов. Приходная и расходная части энергетического
- •167. Монтаж, демонтаж пра. Правила пуэ для производственных участков.
- •168. Критерий устойчивости Рауса.
- •169. Составить уравнения и модель дпт независимого возбуждения по схеме замещения.
- •170. Типы электрических систем зажигания, возможных к применению в составе энергетических установок с газотурбинным приводом.
- •171. Рекомендации по повышению энергоэффективности в отчете о проведенном энергетическом обследовании
- •175. Сглаживание ошибок измерений.
- •Вывод формул для нахождения Коэф.Ов.
32. Особенности конструкций гидрогенераторов и синхронных компенасаторов
Гидрогенераторы средней (25—125 МВт) и большой (150 МВт и более) мощности выполняются с вертикальным расположением вала, а гидрогенераторы небольшой мощности (менее 25 МВт) — с горизонтальным.
В зависимости от напора воды, определяемого высотой плотины, гидрогенераторы имеют различные частоты вращения: до 100 об/мин (тихоходные), 100—200 об/мин (среднеходные) и свыше 200 об/мин (быстроходные). Вал ротора вертикального гидрогенератора вращается в направляющих подшипниках и, кроме того, опирается на упорный подшипник, называемый подпятником.
Статор гидрогенератора. При наружном диаметре гидрогенератора более 4 м его корпус и сердечник статора по условию перевозки выполняют разъемными (из отдельных сегментов). Обмотка статора крупных гидрогенераторов — двухслойная, стержневая, а у небольших — катушечная.
Ротор гидрогенератора явно-полюсный (рис. 3.5). Он состоит из пустотелого вала 1, дискового или спицевого остова 2 и сборного обода 3 с укрепленными на нем полюсами и катушками обмотки возбуждения 4. Остовы при диаметрах ротора до 4 м — дисковые неразъемные, 4—8 м — дисковые разъемные и свыше 8м — спицевые разборные. Обод, являющийся частью сердечника, набран из стальных пластин, скрепленных большим числом стяжных шпилек. Для обеспечения жесткости обод насаживается на остов в нагретом состоянии и расклинивается шпонками.
Сердечники полюсов набраны из стальных пластин, уложенных между двумя коваными башмаками и опрессованных стяжными шпильками, или выполнены массивными из стальных поковок. К ободу они крепятся при помощи Т-образных хвостов с дополнительной расклиновкой стальными клиньями.
Синхронные компенсаторы изготовляются сявнополюсными роторами на 1000 и 750 об/мин с номинальными мощностями 10—160 MB-А. Компенсаторы снеявнополюсными роторами из-за большей стоимости и больших потерь не получили распространения. Расположение роторов у всех синхронных компенсаторов горизонтальное.
Синхронные компенсаторы имеют пусковую обмотку из стержней, уложенных в полузакрытые пазы на полюсах ротора и замкнутых по торцам полюсов накоротко латунными или медными сегментами. Сегменты соседних полюсов соединяются шинами и образуют общее короткозамыкающее кольцо.
33.Взаимосвязь задач текущего планирования режимов работы энергосистем и их оперативного управления
Управление режимами ЭЭС должно обеспечивать выполнение трех основных требований к режимам: экономичность работы, надежность электроснабжения потребителей и нормативное качество энергии. Задача оптимизации режимов загрузки электростанций является одной из наиболее сложных для всех уровней временной иерархии (от оперативного в реальном времени до долгосрочного – квартал, год)
Ее решение является необходимым условием эффективного функционирования ЭЭС, особенно в условиях рыночных отношений разработаны методика создания экспертной системы советчика диспетчера региональной ЭЭС и соответствующее программное обеспечение задач текущего планирования режимов. При планировании режимов работы ЭЭС методика основана на использовании архивов и баз данных (по терминологии экспертной системы) о ретроспективных суточных режимах электропотребления энергоузлов региональной ЭЭС. Эта информация создается в модели оперативного управления режимами путем постоянной (циклической по суткам) обработки данных телеметрических измерений и телесигналов ОИВК АСДУ.
Долгосрочное планирование режимов в сложившейся системе взаимоотношений необходимо для обоснованного распределения планируемой выработки электрической энергии между электростанциями (субъектами ЭЭС) при ожидаемых (вероятностных) тарифах на от- пускаемую ими электрическую энергию. При планировании долгосрочных режимов необходимо учитывать основные факторы предстоящего функционирования энергосистемы, как-то различного рода ограничения режимного характера: плановые ремонты основного генерирующего и сетевого оборудования, предельные режимы по напряжению энергоузлов и пере- токам мощности по системообразующим связям и т.п. По терминологии экспертной системы все это на рис. 3 объединено в так называемую базу знаний
Краткосрочное и особенно суточное планирование режимов необходимы для корректировки выработки электроэнергии между электрическими станциями с учетом сложившейся в ЭЭС реальной ситуации и системы штрафных санкций за нарушение договорных обяза- тельств, определенных при долгосрочном планировании. Эти условия опять же по терминологии экспертной системы задаются в базе знаний (блок 19). Планирование краткосрочных режимов дает необходимую информационную основу для соответствующей оперативной корректировки режимов. И, наконец, управление нормальными режимами функционирования ЭЭС в реальном времени необходимо для оперативной коррекции параметров режима в сложившихся технической и экономической ситуациях.
Взаимосвязь оперативного управления с долгосрочным и краткосрочным планированием режимов осуществляется путем формирования и передачи архивов режимов электропотребления энергоузлов для прошедших суток в почасовую и поминутную базу данных ретроспективных режимов электропотребления
