Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы на экзамен_2018.docx
Скачиваний:
58
Добавлен:
29.06.2020
Размер:
39.63 Кб
Скачать

Слайд 8:

  1. Плавающий способ — использующий для передвижения гребные винты или силы ветра, способные передвигаться над и под водой, к этому способу относятся БППА (беспилотный плавающий аппарат) а также корабли, оснащенные автопилотом.Существует много разработок роботов, которые перемещаются в воде, подражая движениям рыб.

  2. Летающие роботы. Большинство современных самолётов являются летающими роботами, управляемыми пилотами. Автопилот способен контролировать полёт на всех стадиях — включая взлёт и посадку. К летающим роботам относятся также беспилотные летательные аппараты (БПЛА; важный их подкласс составляют крылатые ракеты).

Слайд 9

  1. Ползающие роботы. Существует ряд разработок роботов, перемещающихся подобно змеям, червям, слизням; при этом для реализации движения робот может использовать силы трения (при движении по шероховатой опорной поверхности) или изменение кривизны поверхности. Предполагается, что подобный способ перемещения может придать им возможность перемещаться в узких пространствах; в частности, предполагается использовать подобных роботов для поиска людей под обломками рухнувших зданий. Разработаны также змееподобные роботы, способные перемещаться в воде;

  2. Роботы, перемещающиеся по вертикальным поверхностям. При их проектировании используют различные подходы. Первый подход — проектирование роботов, которые перемещаются подобно человеку, взбирающемуся на стену, покрытую выступами. Примером подобной конструкции может служить разработанный в Стэнфордском университете робот Capuchin. Другой подход — проектирование роботов, перемещающихся подобно гекконам и снабжённых вакуумными присосками.

Слайд 10

Шагающие роботы имеют много преимуществ: они хорошо подходят для пересеченной местности, могут подниматься по ступеням, преодолевать рвы и работать там, где не могут колеса и гусеницы.

Обладая целым рядом преимуществ, шагающие аппараты уступают им по некоторым важным показателям. Принципиальное различие способов перемещения состоит в характере движения центра тяжести аппарата относительно корпуса. При движении колесных средств центр тяжести не изменяет своих координат в системе, связанной с корпусом. При перемещении аппарата шагающего типа, центр тяжести при ходьбе смещается по вертикали.

Создание мобильных роботов, способных передвигаться на двух ногах так же устойчиво, как и человек, сопряжено с огромными трудностями, и основная из них заключается как раз в разработке методов, обеспечивающих динамическую устойчивость двуногого шагающего аппарата. 

Слайд 11

Самый первый в мире шагающий робот, способный в полном смысле этого слова передвигаться на двух ногах, был разработан в Университете Васэда под руководством д-ра Кадо. Кинематический механизм робота включает 11 шарниров (обладает 11 степенями подвижности). Среди них: шарниры стопы (2 шт.), шарниры лодыжки (2 шт.), коленные шарниры (2 шт.), бедренные шарниры (2 шт.), поясничные шарниры (2 шт.), шарнир наклона корпуса (1 шт.).

Перечисленные шарниры в соответствии с расположением своей оси вращения обеспечивают один из трех типов движения: качание, вращение, отклонение. При качании центр тяжести перемещается поступательно в прямом направлении, при вращении он колеблется влево-вправо, а при отклонении возникает возможность для изменения направления поступательного движения центра тяжести. Движение робота в прямолинейном направлении начинается при согласованной работе шести шарниров, каждый из которых обеспечивает перемещение типа "качание". Когда в результате качания нога полностью приподнимается над полом, в работу вступает шарнир типа "вращение", который поворачивает корпус вперед, чтобы центр тяжести робота тоже переместился вперед. Сразу после этого с помощью шарнира наклона корпуса последний слегка наклоняется влево или вправо. В результате поворота и наклона корпуса и прикрепленного к корпусу груза центр тяжести перемещается таким образом, что вся масса робота перераспределяется на одну опорную ногу. Затем при помощи сустава стопы опорной ноги проводится корректировка положения центра тяжести, в результате которой проекция центра тяжести приходится точно на стопу. При этом обеспечивается сохранение контакта стопы с опорной поверхностью всей плоскостью подошвы. Описанный процесс является симметричным по отношению к левой или правой конечности шагающего аппарата; при ходьбе он полностью повторяется на каждом шаге.[3]

Изменение направления движения достигается за счет работы звеньев поясничной части робота (шарниры типа "отклонение"), при помощи которых нога потихоньку разворачивается в нужную сторону.

В общем случае, для того чтобы управлять динамической устойчивой ходьбой двуногого робота, необходимо составить систему уравнений движения шагающего аппарата, моделью которого, как правило, является некоторый многозвенный кинематический механизм. Обычно такой механизм имеет большое число звеньев и обладает многими степенями подвижности. В результате математическая модель аппарата (система уравнений) оказывается слишком сложной, а ее аналитическое исследование становится практически невозможным. Поэтому первое, что необходимо сделать для реализации управления динамической устойчивостью, это найти какой-либо способ упрощения полных аналитических моделей с учетом специфических особенностей двуногой ходьбы. Одна из чрезвычайно простых для аналитического исследования моделей двуногой ходьбы была предложена д-ром Идо. Соответствующая этой модели схема шагающего аппарата показана на рисунке ниже. В данном случае для облегчения анализа приняты следующие, не соответствующие реальности допущения:

● время, в течение которого обе ноги одновременно касаются земли, равно 0;

● длина опорной ноги остается неизменной с момента касания опоры до момента отрыва от нее;

● все движения аппарата совершаются только в сагиттальной плоскости (плоскости, делящей тело человека на правую и левую части), т. е. центр тяжести может перемещаться либо вверх-вниз, либо вперед-назад.

Кроме того, предполагается, что стопа касается опорной поверхности только в одной точке, а величина силы трения, возникающей между стопой и полом, достаточна для того, чтобы исключить возможность проскальзывания.