- •1.Диаграмма состояния IV типа Диаграмма состояния IV типа Компоненты образуют в твердом состоянии химические соединения
- •Диаграмма состояния для сплавов, образующих химические соединения
- •Диаграмма с устойчивым химическим соединением
- •Диаграмма состояния с устойчивым химическим соединением AnBm
- •Диаграмма состояния с двумя устойчивыми химическими соединениями
- •Диаграмма состояния с твердым раствором на базе химического соединения
- •Диаграмма с неустойчивым химическим соединением
- •2.Диаграмма состояния железоуглеродистых сплавов.
- •3. Микроструктура сплавов.
- •Фазовый состав и микроструктура
- •4.Влияние углерода на физико-механические свойства стали
- •6.Термическая обработка сталей.
- •В зависимости от химического состава:
- •2. В зависимости от концентрации углерода:
- •3. По назначению:
- •4. В зависимости от качества:
- •7. Структура и механические свойства чугунов.
- •Передельные белые чугуны
- •Литейные чугуны
- •Серые чугуны
- •Высокопрочные серые чугуны
- •Ковкие чугуны
- •Применение чугунных изделий в строительстве
- •8.Легированные стали
3. Микроструктура сплавов.
-Многие считают, что для оценки свойств сплавов достаточно знать их химический состав. Но это не совсем так.
-Например, многие сплавы после термообработки становятся намного прочнее, хотя химсостав при этом не меняется. И, наоборот, небольшое изменение химического состава сплава может вызвать большое изменение его механических или технологических свойств.
-На самом деле важно знать, каким образом составляющие компоненты присутствуют в сплаве, а для этого надо знать его фазовый состав. Можно считать, что химический состав определяет возможные свойства, а фактические свойства определяются фазовым составом.
-Для введения понятия Микроструктура, обратимся к фазовому составу.
Фазовый состав и микроструктура
-Чистые металлы после кристаллизации всегда состоят из кристаллитов одного типа, т.е. из зерен одинакового химического состава. Совокупность зерен (кристаллитов) одинакового химического состава называется фазой. Все чистые металлы являются однофазными.
-В отличие от чистых металлов процесс образования сплавов намного сложнее. Результат кристаллизации редко бывает однозначным, поскольку определяется несколькими факторами: взаимной растворимостью компонент, условиями охлаждения, последующей термообработкой. Если сплав состоит из зерен одного химического состава, то он является однофазным (гомогенным). Если образуются кристаллы разного химического состава, то сплав считается многофазным (гетерогенным), а разновидности образующихся кристаллов определяют его фазовый состав.
Зерна разных фаз могут по-разному сосуществовать друг с другом. Невооруженным глазом зёренное строение не видно, оно доступно только при микроскопическом исследовании полированных, предварительно протравленных шлифов. Строение сплава, наблюдаемое через микроскоп, называется микроструктурой (на практике очень часто говорят просто «структура»).
Участки микроструктуры, которые одинаково выглядят при рассмотрении через микроскоп, называются структурными составляющими. Они имеют однообразную форму, дисперсность (размеры) и взаимное расположение зерен. Структурные составляющие могут состоять из а) кристаллов одной фазы или б) из зерен нескольких фаз.
Свойства сплавов определяются их микроструктурой, т.е. видом и составом структурных составляющих, которые, в свою очередь, определяются фазовым составом.
Слайд 4 (диаграмма состояний)
Слайд 5 (кривые охлаждения чистых металлов и сплавов) диаграмма
Слайд 6-8 (разновидность растворов)
Твёрдый раствор
Твердые растворы составляют основу большинства промышленных сплавов. Закаленный сплав (быстро охлаждённый) имеет большую прочность, чем медленно охлажденный, при этом уровень пластичности сохраняется (но также возможен вариант когда, упрочнение сопровождается снижением пластичности). Это из-за того что растворимость одного металла в другом ограничена и за висит от температуры.
Чистые металлы
В сплавах могут присутствовать кристаллы чистых металлов (образующих эти сплавы). Они образуются в тех случаях, когда компоненты сплавов растворимы в жидком, но нерастворимы в твердом состоянии (например в системах Pb-Sb, Sn-Zn, Bi-Cd).
Химические соединения
Сплавы могут содержать компоненты, которые образуют друг с другом химические соединения. Это могут быть соединения металлов с металлами (например, Mg2Si, Cu2FeAl7) или с неметаллами. Самым известным является соединение Fe3C в сталях - цементит. Большинство химических соединений очень хрупкие и твердые.
Слайд 7 (диаграмма состояний)
-Описание любых сплавов всегда начинается с рассмотрения их диаграмм состояний. Поэтому имеет смысл разобраться, что на них изображено и зачем они нужны. Существует с десяток видов диаграмм.
-Одна из них показана на рисунке и описывает систему, две компоненты которой (А и В) неограниченно растворимы в жидком состоянии, но ограниченно растворимы в твердом состоянии. По вертикальной оси отложена температура, по горизонтальной – концентрация компоненты В. Такая диаграмма позволяет рассматривать свойства целого семейства сплавов.
(*объясняем на сайде*)
-Линии KCD и KE показывают как зависят от концентрации В температуры начала (ликвидус TL) и окончания кристаллизации (солидус TS). Величина интервала кристаллизации, (TL – TS), в котором растут кристаллы твердого раствора А и В, зависит от состава сплава.
-Линия SE (линия сольвус) характеризует растворимость компоненты В от температуры (в данном случае она уменьшается при охлаждении). Линии солидус и сольвус пересекаются в точке Е. Ей соответствует температура Тэвт, при которой кристаллы твердого раствора, растущие из расплава, становятся насыщенными и поэтому не могут расти дальше.
-Поскольку «нормальная» кристаллизация не завершается, отвердение жидкой фазы должно закончиться иначе: при температуре ТЭВТ из оставшейся части жидкого раствора образуется эвтектика. Соответствующая температура называется эвтектической, а линия EF – линией эвтектики.
Пересечение линии солидус с линией эвтектики определяет точку С (точка эвтектики). Ей соответствует состав сплава, называемый эвтектическим. Видно, что эвтектический состав имеет температуру (а не интервал!) плавления ТЭВТ, которая ниже температуры плавления компонент, составляющих сплав. Этот факт объясняет происхождение термина: на древнегреческом «эвтектика» означает «легкоплавкая».
Диаграмма состояния позволяет определить:
1. области существования сплавов с однотипной микроструктурой (на рисунке выделены цветом)
2. превращения, которые могут происходить при изменении температуры
3. возможные фазы и структурные составляющие, которые и определяют свойства сплавов.
4. интервалы кристаллизации и температуры проведения различных видов термообработки.
6. ФАЗОВЫЙ СОСТАВ и СВОЙСТВА СПЛАВОВ
Механические, технологические и другие свойства, в конечном счете, определяются фазовым составом и структурными составляющими. Этим объясняется целесообразность существования большого количества сплавов, часто «незначительно» отличающихся по своему химическому составу. Существует определенная связь между фазовым составом и свойствами сплавов.
1. Однофазные сплавы на основе ненасыщенного ?-раствора имеют высокую пластичность при низких и высоких температурах, поэтому хорошо поддаются и холодной и горячей деформации. Отсутствие фазовых превращений при изменении температуры исключает возможность их термоупрочнения, поэтому они упрочняются только холодной деформацией.
2. Многофазные сплавы с малопластичными или хрупкими фазами имеют пониженную пластичность. Обычно они ограниченно поддаются обработке давлением (например, только в «горячем» или «холодном» состоянии) или вообще не деформируются.
3. Сплавы, имеющие в своем составе компоненты с переменной растворимостью, допускают термоупрочнение (путем закалки и последующего старения).
4. Сплавы с составом, близким к эвтектическому, имеют повышенные литейные свойства (из-за отсутствия крупных первичных кристаллов применяются доэвтектические сплавы).
Сплавы, допускающие горячую и (или) холодную обработку давлением (прессование, волочение, прокатка, ковка) относятся к деформируемым сплавам. Сплавы с хорошими литейными свойствами называются литейными. Такое деление часто условное, т.к. многие сплавы используются и как деформируемые и как литейные.
По способу упрочнения сплавы делят на термоупрочняемые и упрочняемые давлением. Многие сплавы допускают упрочнение и термообработкой и давлением.
