- •А.Н. Игнатов
- •Новосибирск 2013
- •Предисловие
- •1.1 Введение в волоконную оптику
- •1.2 Особенности оптической электроники
- •1.3 История развития оптоэлектроники
- •1.4 Современное состояние оптоэлектронной элементной базы
- •1.5 Система обозначений оптоэлектронных приборов индикации
- •1.6 Система обозначений полупроводниковых приборов и оптронов
- •Тестовые вопросы к главе 1 «Введение в оптоэлектронику»
- •2 Физические основы оптоэлектроники
- •2.1 Различие между фотометрическими и энергетическими характеристиками
- •2.2 Фотометрические характеристики оптического излучения
- •2.2.1 Функция видности и ее зависимость от длины электромагнитной волны
- •2.2.2 Телесный угол, световой поток и механический эквивалент света
- •2.2.3 Сила света, IV
- •2.2.4 Освещенность поверхности, е
- •2.2.5 Закон освещенности
- •2.2.6 Светимость излучающей поверхности, м
- •2.2.7 Яркость светящейся поверхности, l
- •Величина
- •2.2.8 Закон Ламберта
- •2.2.9 Световая экспозиция, нv
- •2.5 Колориметрические параметры
- •2.6 Когерентность оптического излучения
- •2.6.1 Монохроматическая электромагнитная волна (мэв)
- •2.6.2 Особенности излучения электромагнитных волн в ультрафиолетовом (уф), видимом и инфракрасном (ик) диапазонах
- •2.7 Квантовые переходы и вероятности излучательных переходов
- •2.7.1 Энергетические уровни и квантовые переходы
- •2.7.2 Спонтанные переходы
- •2.7.3 Вынужденные переходы
- •2.7.4 Соотношения между коэффициентами Эйнштейна
- •2.7.5 Релаксационные переходы
- •2.8 Ширина спектральной линии
- •2.9 Использование вынужденных переходов для усиления электромагнитного поля
- •2.10 Механизм генерации излучения в полупроводниках
- •2.11 Прямозонные и непрямозонные полупроводники
- •2.12 Внешний квантовый выход и потери излучения
- •2.13 Излучатели на основе гетероструктур
- •2.14 Поглощение света в твердых телах
- •2.15 Типы переходов и характеристики излучающих полупроводниковых структур.
- •2.16 Параметры оптического излучения
- •Тестовые вопросы к главе 2 «Физические основы оптоэлектроники»
- •3 Приборы некогерентного излучения
- •3.1 Источники света
- •3.1.1 Разновидности источников
- •3.2 Основные характеристики и параметры светодиодов
- •3.2.1 Параметры светодиодов
- •3.2.2 Характеристики светодиодов
- •3.2.3 Определение и оценка параметров светодиодов
- •3.2.4 Схемы возбуждения, обеспечивающие высокую световую эффективность светодиодов
- •3.2.5 Влияние температуры
- •3.2.6 Срок службы
- •3.2.7 Ограничение тока
- •3.2.8 Достоинства твердотельных излучателей
- •3.3 Конструкции светодиодов
- •3.4 Основные схемы возбуждения светодиодов
- •3.5 Выбор типа светодиода
- •3.5.1 Основные соображения для выбора типа светодиода
- •3.5.2 Памятка разработчику
- •3.6 Электрическая модель светодиода
- •3.7 Светодиоды инфракрасного излучения
- •3.8 Светодиодные источники повышенной яркости и белого света
- •Тестовые вопросы к главе 3 «Источники некогерентного излучения»
- •4 Приборы когерентного излучения
- •4.1 Физические основы усиления и генерации лазерного излучения
- •4.2 Структурная схема лазера
- •4.3 Лазеры на основе кристаллических диэлектриков
- •4.4 Жидкостные лазеры
- •4.5 Газовые лазеры
- •4.6 Устройство и принцип действия полупроводникового инжекционного моно лазера
- •4.7 Устройство и принцип действия полупроводниковых лазеров с гетероструктурами
- •4.8 Волоконно-оптические усилители и лазеры
- •4.8.1 Волоконные усилители
- •4.8.2 Волоконные лазеры
- •4.8.3 Волоконные лазеры на основе вынужденного комбинационного рассеяния
- •4.9 Светоизлучающие диоды для волоконно-оптических систем
- •4.10 Сравнительная характеристика лазеров и светодиодов
- •4.10.1 Параметры отечественных полупроводниковых лазеров и оптических модулей
- •4.11. Квантовые эффекты в полупроводниках
- •4.12. Фотонные нанокристаллы.
- •4.13. Наноэлектронные лазеры
- •4.13.1. Наноэлектронные лазеры с горизонтальными резонаторами
- •4.13.2. Наноэлектронные лазеры с вертикальными резонаторами
- •4.14.1. Органические светодиоды
- •4.14.2. Пассивно-матричные oled
- •4.14.3. Активно-матричные oled
- •4.14.4. Технологии получения органических светодиодов
- •Тестовые вопросы к главе 4 «Приборы когерентного излучения»
- •5 Полупроводниковые фотоприемные приборы
- •5.1 Принцип работы фотоприемных приборов
- •5.2 Характеристики, параметры и модели фотоприемников
- •5.2.1 Параметры фотоприемников
- •5.2.2 Характеристики фотоприемников
- •5.2.3 Параметры фотоприемника как элемента оптопары
- •5.2.4 Электрические модели фотоприемников
- •5.3 Фотодиоды на основе p-n – перехода
- •5.4 Фотодиоды с p–I–n структурой
- •5.5 Фотодиоды Шоттки
- •5.6 Фотодиоды с гетероструктурой
- •5.7 Лавинные фотодиоды
- •5.8 Фототранзисторы
- •5.9 Фототиристоры
- •5.10 Фоторезисторы
- •5.11 Основные характеристики и параметры фоторезистора
- •5.12 Пзс приемные фотоприборы
- •5.13 Фотодиодные сбис на основе моп – транзисторов
- •5.14 Пиротехнические фотоприемники
- •5.15. Фотоприемные наноэлектронные приборы
- •5.15.1. Фотоприемники на квантовых ямах
- •5.15.2. Фотоприемники на основе квантовых точек
- •Тестовые вопросы к главе 5 «Полупроводниковые фотоприемные Приборы»
- •6 Оптроны
- •6.1 Устройство и принцип действия оптронов
- •6.2 Структурная схема оптрона
- •6.3 Классификация и параметры оптронов
- •6.4 Электрическая модель оптрона
- •6.5 Резисторные оптопары
- •6.6 Диодные оптопары
- •6.7 Транзисторные оптопары
- •6.8 Тиристорные оптопары
- •Тестовые вопросы к главе 6 «Оптроны»
- •7 Индикаторные приборы
- •7.1 Жидкокристаллические индикаторы
- •7.1.1 Основы теории
- •7.1.2 Ячейки на основе эффекта динамического рассеяния (др – ячейки)
- •7.1.3 Ячейки на основе твист-эффекта
- •7.1.4 Основные типы и параметры
- •7.1.5 Схемы включения жидкокристаллических индикаторов
- •7.1.6 Схемы управления многоразрядными индикаторами
- •7.2 Электролюминесцентные индикаторы
- •7.2.1 Устройство и принцип действия
- •7.2.2 Типы и параметры
- •7.2.3 Схемы включения электролюминесцентных индикаторов
- •7.3 Плазменные панели и устройства на их основе
- •7.4 Электрохромные индикаторы
- •7.5. Отображение информации индикаторными приборами
- •Тестовые вопросы к главе 7 «Индикаторные приборы»
- •8 Применение оптоэлектроннх приборов
- •8.1 Устройство и принцип действия оптоэлектронных генераторов
- •8.1.1 Блокинг - генератор
- •8.1.2 Генератор линейно изменяющегося напряжения
- •8.1.3 Генератор с мостом Вина
- •8.2 Применение оптоэлектронных приборов в аналоговых ключах и регуляторах
- •8.3 Применение оптронов для выполнения логических функций
- •8.4 Применение оптронов как аналогов электрорадиокомпонентов
- •8.5 Устройство и принцип действия оптоэлектронных усилителей
- •8.6 Устройство и принцип действия оптоэлектронных цифровых ключей
- •8.7 Применение оптоэлектронных приборов для измерения высоких напряжений и управления устройствами большой мощности
- •8.8 Устройство и принцип действия оптических устройств записи информации
- •8.9 Принцип лазерно-оптического считывания информации
- •8.10 Принципы цифровой оптической записи и воспроизведения информации с компакт дисков
- •8.10.1 Устройство компакт-диска
- •8.10.2 Запись на компакт диски
- •8.10.3 Отличия cd-r/cd-rw дисков от штампованных
- •8.10.4 Маркировка дисков
- •8.10.5 Надежность дисков cd-r/rw в сравнении со штампованными
- •8.10.6 Изготовление и тиражирование компакт-дисков
- •8.10.7 Воспроизведение компакт-диска
- •8.10.8 Устройство накопителей на cd-rom
- •8.10.9 Представление и параметры звукового сигнала на cd
- •8.10.10 Джиттер
- •8.11 Оптоэлектронные сенсорные системы взаимодействия человека с электронной техникой.
- •8.11 Лазерный микропроектор со спиральной разверткой для мобильных устройств
- •Тестовые вопросы к главе 8 «Применение оптоэлектронных приборов»
- •9. Волоконно-оптические системы связи
- •9.1. Общие сведения
- •9.2. Классификация волоконно-оптических систем распределения
- •9.3. Волоконно-оптические системы распределения
- •9.4. Оптические передатчики
- •9.5 Приемники волоконно-оптических систем связи
- •9.5.1 Приемные оптоэлектронные модули
- •9.6. Цифровые волоконно-оптические системы связи
- •9.7. Аналоговые волоконно-оптические системы связи
- •9.8 Умные соединители на основе смартлинков
- •9.8.1 Технические решения смартлинков
- •9.8.2 Самоформирующиеся компьютеры
- •9.8.3 Оптоволоконные нейроинтерфейсы
- •9.9 Волоконно оптические технологии для сетей доступа
- •9.9.1 Общие сведения
- •9.9.2 Тенденции мирового развития сетей доступа
- •9.9.3 Технологии оптических сетей доступа
- •9.9.4 Категории оптических сетей доступа
- •9.9.5 Волокно до бизнеса – FttBusiness
- •9.9.6 Волокно до дома – ftth
- •9.9.7 Волокно до многоквартирного дома – fттb
- •9.9.8 Волокно до сельского района
- •9.10 Медиоконверторы и их применение в оптических системах связи
- •9.10.1 Общие сведения
- •9.10.2. Основные технические требования, предъявляемые к оборудованию
- •9.10.3. Классификация медиаконвертеров по критерию управляемости
- •9.10.4. Конструктивное исполнение
- •9.10.5. Основные параметры медиаконвертеров
- •9.10.6. Система управления
- •9.10.7. Устройство и применение медиоконвертора rs-485
- •Тестовые вопросы к главе 9 «Волоконно-оптические системы связи»
- •Приложение п1
- •Приложение п2
- •Приложение п3
- •Приложение п4 Перечень принятых сокращений
- •Список цитированной литературы
8.9 Принцип лазерно-оптического считывания информации
Считывание информации представляет собой процесс регистрации колебаний луча маломощного лазера, отраженного от металлической поверхности диска. Лазер посылает сфокусированный луч света на нижнюю часть диска, а светочувствительный фоторецептор улавливает отраженный луч. Луч лазера, попавший на площадку (плоскую поверхность дорожки), всегда отражается обратно; в свою очередь, луч, попавший во впадину на дорожке, обратно не отражается.
Диск вращается над лазером и рецептором (приемником), поэтому лазер непрерывно излучает свет, а рецептор воспринимает то, что в сущности является набором световых вспышек, повторяющих рис. впадин и площадок, по которым проходит лазерный луч. Всякий раз, когда луч лазера пересекает границы впадины, изменяется состояние отраженного сигнала. Каждое такое изменение, вызванного пересечением границы впадины, преобразуется в бит со значением 1. Микропроцессоры накопителя пересчитывают переходы светлый/темный и темный/светлый (т.е. границы впадины) в единицы (1); область, не содержащая переходи, представляется нулем (0). Полученный набор двоичных разрядов затем преобразуется в данные или звук.
Глубина отдельных впадин, образующих дорожку компакт-диска, равна 0,125 микрона, а их ширина – 0,6 микрона (1 микрон равен миллионной части метра). Минимальная длина впадин или площадок составляет 0,9 микрона, максимальная – 3,3 микрона (рис. 9.15).
Рис. 8.15. Геометрия впадин и площадок, образующих дорожку компакт-диска
Высота впадины относительно плоскости площадки имеет особое значение, так как она непосредственно связана с длиной волны луча лазера, используемого при чтении диска. Высота впадины (штриха) составляет ровно 1/4 часть длины волны лазерного луча. Таким образом, луч лазера, попавший на площадку, проходит расстояние, которое на половину длины волны (1/4 + 1/4 = 1/2) больше расстояния, пройденного лучом, отразившимся от впадины. Это означает, что световой луч, отраженный от впадины, на 1/2 длины волны не совпадает по фазе со световыми лучами, отражаемыми от поверхности диска. Волны, находящиеся в противофазе, гасят друг друга, тем самым значительно уменьшая количество отражаемого света. В результате впадины, несмотря на то, что покрыты металлической отражающей пленкой, стают «черными» (т.е. не отражающими свет).
Считывающий лазер, используемый в дисководе CD, представляет собой маломощный лазер с длиной волны 780 нм (нанометров) и мощностью около 1 мВт (милливатт). Поликарбонатная пластмасса, используемая при изготовлении компакт-дисков, имеет коэффициент преломления 1,55. Таким образом, свет проходит через пластмассу диска в 1,55 раза медленнее, чем через окружающую среду. Так как частота света остается постоянной, это приводит к сокращению длины волны в пределах диска с тем же коэффициентом. Следовательно, длина волны, равная 780 нм, уменьшается до 500 нм (780/1,55 = 500 нм). Одна четвертая часть от 500 нм составляет 125 нм, или 0,125 микрона, что и является высотой впадины (штриха).
Пыль и царапины на защитном слое не мешают, поскольку они находятся вне плоскости фокусировки считывающей оптики (рис. 8.16).
При считывании микроскопических маленьких структур используются эффекты дифракции и интерференции света.
Рис. 8.16. Сечение видеодиска и грампластинки с лазерной записью: 1 – фокальное пятно ( 1 мкм); 2 – структура микроуглублений; 3 – зеркальное покрытие; 4 – царапина; 5 – частица пыли; в прозрачный защитный слой;
7 – луч от лазера
Оптическая считывающая система для видеодисков состоит из:
лазера (мощность 1 мВт), который излучает линейно поляризованный свет;
делителя пучка, который разделяет свет на три пучка с соотношениями интенсивностей 1:3:1 (дифракционная решетка, работающая на просвет с минус первым, нулевым и плюс первым порядками дифракции);
призмы Волластона {оптическая длина пути зависит от направления поляризации);
пластинки /4;
считывающего объектива, перемещаемого по принципу катушки с подвижным сердечником в направлении оптической оси (ограниченный дифракцией микрообъектив очень малой массы);
системы фотоприемников, а также цилиндрической линзы.
Рассеянный в обратном направлении от диска свет лазерного пучка отображается на приемнике, лучи, использованные для слежения за дорожкой, попадают на приемники слежения (рис. 8.17).
Рис. 8.17. Оптическая схема считывающей головки для считывания информации, записанной на видеодиске: 1 – He-Ne-лазер; 2 – решетка; 3 – согласующая оптика; 4 – призма Волластона; 5 – пластинка /4; 6 – считывающий объектив; 7 – видеодиск; 8 – цилиндрическая линза; 9 – плоскость приемника
Благодаря приемникам становится возможным формирование управляющих сигналов для коррекции фокусировки считывающих лучей на информационной дорожке и обеспечение слежения за дорожкой.
