- •А.Н. Игнатов
- •Новосибирск 2013
- •Предисловие
- •1.1 Введение в волоконную оптику
- •1.2 Особенности оптической электроники
- •1.3 История развития оптоэлектроники
- •1.4 Современное состояние оптоэлектронной элементной базы
- •1.5 Система обозначений оптоэлектронных приборов индикации
- •1.6 Система обозначений полупроводниковых приборов и оптронов
- •Тестовые вопросы к главе 1 «Введение в оптоэлектронику»
- •2 Физические основы оптоэлектроники
- •2.1 Различие между фотометрическими и энергетическими характеристиками
- •2.2 Фотометрические характеристики оптического излучения
- •2.2.1 Функция видности и ее зависимость от длины электромагнитной волны
- •2.2.2 Телесный угол, световой поток и механический эквивалент света
- •2.2.3 Сила света, IV
- •2.2.4 Освещенность поверхности, е
- •2.2.5 Закон освещенности
- •2.2.6 Светимость излучающей поверхности, м
- •2.2.7 Яркость светящейся поверхности, l
- •Величина
- •2.2.8 Закон Ламберта
- •2.2.9 Световая экспозиция, нv
- •2.5 Колориметрические параметры
- •2.6 Когерентность оптического излучения
- •2.6.1 Монохроматическая электромагнитная волна (мэв)
- •2.6.2 Особенности излучения электромагнитных волн в ультрафиолетовом (уф), видимом и инфракрасном (ик) диапазонах
- •2.7 Квантовые переходы и вероятности излучательных переходов
- •2.7.1 Энергетические уровни и квантовые переходы
- •2.7.2 Спонтанные переходы
- •2.7.3 Вынужденные переходы
- •2.7.4 Соотношения между коэффициентами Эйнштейна
- •2.7.5 Релаксационные переходы
- •2.8 Ширина спектральной линии
- •2.9 Использование вынужденных переходов для усиления электромагнитного поля
- •2.10 Механизм генерации излучения в полупроводниках
- •2.11 Прямозонные и непрямозонные полупроводники
- •2.12 Внешний квантовый выход и потери излучения
- •2.13 Излучатели на основе гетероструктур
- •2.14 Поглощение света в твердых телах
- •2.15 Типы переходов и характеристики излучающих полупроводниковых структур.
- •2.16 Параметры оптического излучения
- •Тестовые вопросы к главе 2 «Физические основы оптоэлектроники»
- •3 Приборы некогерентного излучения
- •3.1 Источники света
- •3.1.1 Разновидности источников
- •3.2 Основные характеристики и параметры светодиодов
- •3.2.1 Параметры светодиодов
- •3.2.2 Характеристики светодиодов
- •3.2.3 Определение и оценка параметров светодиодов
- •3.2.4 Схемы возбуждения, обеспечивающие высокую световую эффективность светодиодов
- •3.2.5 Влияние температуры
- •3.2.6 Срок службы
- •3.2.7 Ограничение тока
- •3.2.8 Достоинства твердотельных излучателей
- •3.3 Конструкции светодиодов
- •3.4 Основные схемы возбуждения светодиодов
- •3.5 Выбор типа светодиода
- •3.5.1 Основные соображения для выбора типа светодиода
- •3.5.2 Памятка разработчику
- •3.6 Электрическая модель светодиода
- •3.7 Светодиоды инфракрасного излучения
- •3.8 Светодиодные источники повышенной яркости и белого света
- •Тестовые вопросы к главе 3 «Источники некогерентного излучения»
- •4 Приборы когерентного излучения
- •4.1 Физические основы усиления и генерации лазерного излучения
- •4.2 Структурная схема лазера
- •4.3 Лазеры на основе кристаллических диэлектриков
- •4.4 Жидкостные лазеры
- •4.5 Газовые лазеры
- •4.6 Устройство и принцип действия полупроводникового инжекционного моно лазера
- •4.7 Устройство и принцип действия полупроводниковых лазеров с гетероструктурами
- •4.8 Волоконно-оптические усилители и лазеры
- •4.8.1 Волоконные усилители
- •4.8.2 Волоконные лазеры
- •4.8.3 Волоконные лазеры на основе вынужденного комбинационного рассеяния
- •4.9 Светоизлучающие диоды для волоконно-оптических систем
- •4.10 Сравнительная характеристика лазеров и светодиодов
- •4.10.1 Параметры отечественных полупроводниковых лазеров и оптических модулей
- •4.11. Квантовые эффекты в полупроводниках
- •4.12. Фотонные нанокристаллы.
- •4.13. Наноэлектронные лазеры
- •4.13.1. Наноэлектронные лазеры с горизонтальными резонаторами
- •4.13.2. Наноэлектронные лазеры с вертикальными резонаторами
- •4.14.1. Органические светодиоды
- •4.14.2. Пассивно-матричные oled
- •4.14.3. Активно-матричные oled
- •4.14.4. Технологии получения органических светодиодов
- •Тестовые вопросы к главе 4 «Приборы когерентного излучения»
- •5 Полупроводниковые фотоприемные приборы
- •5.1 Принцип работы фотоприемных приборов
- •5.2 Характеристики, параметры и модели фотоприемников
- •5.2.1 Параметры фотоприемников
- •5.2.2 Характеристики фотоприемников
- •5.2.3 Параметры фотоприемника как элемента оптопары
- •5.2.4 Электрические модели фотоприемников
- •5.3 Фотодиоды на основе p-n – перехода
- •5.4 Фотодиоды с p–I–n структурой
- •5.5 Фотодиоды Шоттки
- •5.6 Фотодиоды с гетероструктурой
- •5.7 Лавинные фотодиоды
- •5.8 Фототранзисторы
- •5.9 Фототиристоры
- •5.10 Фоторезисторы
- •5.11 Основные характеристики и параметры фоторезистора
- •5.12 Пзс приемные фотоприборы
- •5.13 Фотодиодные сбис на основе моп – транзисторов
- •5.14 Пиротехнические фотоприемники
- •5.15. Фотоприемные наноэлектронные приборы
- •5.15.1. Фотоприемники на квантовых ямах
- •5.15.2. Фотоприемники на основе квантовых точек
- •Тестовые вопросы к главе 5 «Полупроводниковые фотоприемные Приборы»
- •6 Оптроны
- •6.1 Устройство и принцип действия оптронов
- •6.2 Структурная схема оптрона
- •6.3 Классификация и параметры оптронов
- •6.4 Электрическая модель оптрона
- •6.5 Резисторные оптопары
- •6.6 Диодные оптопары
- •6.7 Транзисторные оптопары
- •6.8 Тиристорные оптопары
- •Тестовые вопросы к главе 6 «Оптроны»
- •7 Индикаторные приборы
- •7.1 Жидкокристаллические индикаторы
- •7.1.1 Основы теории
- •7.1.2 Ячейки на основе эффекта динамического рассеяния (др – ячейки)
- •7.1.3 Ячейки на основе твист-эффекта
- •7.1.4 Основные типы и параметры
- •7.1.5 Схемы включения жидкокристаллических индикаторов
- •7.1.6 Схемы управления многоразрядными индикаторами
- •7.2 Электролюминесцентные индикаторы
- •7.2.1 Устройство и принцип действия
- •7.2.2 Типы и параметры
- •7.2.3 Схемы включения электролюминесцентных индикаторов
- •7.3 Плазменные панели и устройства на их основе
- •7.4 Электрохромные индикаторы
- •7.5. Отображение информации индикаторными приборами
- •Тестовые вопросы к главе 7 «Индикаторные приборы»
- •8 Применение оптоэлектроннх приборов
- •8.1 Устройство и принцип действия оптоэлектронных генераторов
- •8.1.1 Блокинг - генератор
- •8.1.2 Генератор линейно изменяющегося напряжения
- •8.1.3 Генератор с мостом Вина
- •8.2 Применение оптоэлектронных приборов в аналоговых ключах и регуляторах
- •8.3 Применение оптронов для выполнения логических функций
- •8.4 Применение оптронов как аналогов электрорадиокомпонентов
- •8.5 Устройство и принцип действия оптоэлектронных усилителей
- •8.6 Устройство и принцип действия оптоэлектронных цифровых ключей
- •8.7 Применение оптоэлектронных приборов для измерения высоких напряжений и управления устройствами большой мощности
- •8.8 Устройство и принцип действия оптических устройств записи информации
- •8.9 Принцип лазерно-оптического считывания информации
- •8.10 Принципы цифровой оптической записи и воспроизведения информации с компакт дисков
- •8.10.1 Устройство компакт-диска
- •8.10.2 Запись на компакт диски
- •8.10.3 Отличия cd-r/cd-rw дисков от штампованных
- •8.10.4 Маркировка дисков
- •8.10.5 Надежность дисков cd-r/rw в сравнении со штампованными
- •8.10.6 Изготовление и тиражирование компакт-дисков
- •8.10.7 Воспроизведение компакт-диска
- •8.10.8 Устройство накопителей на cd-rom
- •8.10.9 Представление и параметры звукового сигнала на cd
- •8.10.10 Джиттер
- •8.11 Оптоэлектронные сенсорные системы взаимодействия человека с электронной техникой.
- •8.11 Лазерный микропроектор со спиральной разверткой для мобильных устройств
- •Тестовые вопросы к главе 8 «Применение оптоэлектронных приборов»
- •9. Волоконно-оптические системы связи
- •9.1. Общие сведения
- •9.2. Классификация волоконно-оптических систем распределения
- •9.3. Волоконно-оптические системы распределения
- •9.4. Оптические передатчики
- •9.5 Приемники волоконно-оптических систем связи
- •9.5.1 Приемные оптоэлектронные модули
- •9.6. Цифровые волоконно-оптические системы связи
- •9.7. Аналоговые волоконно-оптические системы связи
- •9.8 Умные соединители на основе смартлинков
- •9.8.1 Технические решения смартлинков
- •9.8.2 Самоформирующиеся компьютеры
- •9.8.3 Оптоволоконные нейроинтерфейсы
- •9.9 Волоконно оптические технологии для сетей доступа
- •9.9.1 Общие сведения
- •9.9.2 Тенденции мирового развития сетей доступа
- •9.9.3 Технологии оптических сетей доступа
- •9.9.4 Категории оптических сетей доступа
- •9.9.5 Волокно до бизнеса – FttBusiness
- •9.9.6 Волокно до дома – ftth
- •9.9.7 Волокно до многоквартирного дома – fттb
- •9.9.8 Волокно до сельского района
- •9.10 Медиоконверторы и их применение в оптических системах связи
- •9.10.1 Общие сведения
- •9.10.2. Основные технические требования, предъявляемые к оборудованию
- •9.10.3. Классификация медиаконвертеров по критерию управляемости
- •9.10.4. Конструктивное исполнение
- •9.10.5. Основные параметры медиаконвертеров
- •9.10.6. Система управления
- •9.10.7. Устройство и применение медиоконвертора rs-485
- •Тестовые вопросы к главе 9 «Волоконно-оптические системы связи»
- •Приложение п1
- •Приложение п2
- •Приложение п3
- •Приложение п4 Перечень принятых сокращений
- •Список цитированной литературы
4.14.3. Активно-матричные oled
Выполняются на стеклянных подложках, поверх которых изготовлены тонкопленочные транзисторы (ТПТ), обеспечивающие индивидуальную адресацию каждого пиксела дисплея и позволяющие тем самым снизить потребляемую им мощность. Для формирования ТПТ-матрицы наиболее перспективен метод низкотемпературной обработки поликристаллического кремния (Low-Temperature Polycrystalline Silicon – LTPS). По-видимому, LTPS-подложки по мере модернизации существующих предприятий и строительства новых заменят более распространенные сейчас подложки с тонкопленочными транзисторами на аморфном кремнии, поскольку обеспечивают высокое разрешение (до 200 пикселов/дюйм и выше) и малое энергопотребление. При использовании AMOLED сокращается число требуемых внешних схем управления и существенно упрощаются электрические соединения между модулем дисплея и остальными блоками системы. Ведутся работы и по изготовлению AMOLED на подложках с ТПТ на монокристаллическом кремнии, что перспективно для создания микродисплеев с высоким разрешением. Число пикселов, разрешение и размер AMOLED практически ничем не ограничены. Панели этого типа перспективны для реализации СОИ с высоким разрешением и информационным содержанием, в том числе средств отображения видеоинформации и графических устройств.
Основные рабочие характеристики дисплея, к которым относятся длина волны излучения (цвет), срок службы и эффективность, определяет в первую очередь органический материал многослойной структуры. Сегодня органические светодиоды в основном выполняются либо на базе материалов, молекулы которых легче молекул простейшего белка, – так называемых низкомолекулярных материалов (эти светодиоды зачастую и называют OLED или Small-Molecule OLED – SMOLED), либо на основе специального класса полимеров, способных излучать свет при возбуждении (так называемые полимерные LED, или PLED). Пионер в области разработки PLED – компания Cambridge Display Technology (CDT), владеющая ключевыми патентами на их создание, на процессы оптимизации параметров и процессы изготовления. В PLED, как правило, используются полимеры двух семейств – поли р-фениленвинилен (PPV) и полифлуорен (PF). Полимер наносится на подложку методом струйной печати. Для этого чрезвычайно тонкие пленки полимерного материала помещаются в раствор с целью получения распыляемых чернил, а специальный струйный принтер наносит на подложку капли жидкого красного, зеленого и синего полимера. Правда, создание структуры, содержащей материалы разного цвета излучения, т.е. полноцветного дисплея, – задача не простая. Тем не менее, метод достаточно прост и позволяет изготавливать гибкие и дешевые дисплеи достаточно больших размеров. Так, компания Philips методом струйной печати изготовила полноцветный PLED-дисплей с диагональю 13 дюймов и разрешением 576×324 пикселов. Красные, зеленые и синие пикселы наносились принтером с четырьмя головками и 256 управляемыми пьезоэлементами соплами, распылявшими соответствующие полимеры. Компанией CDT был изготовлен PLED-дисплей с диагональю 40 дюймов.
Изготовление OLED на основе низкомолекулярного материала требует применения сложного оборудования вакуумного осаждения, которое более пригодно для формирования полноцветных дисплеев с высоким разрешением. С помощью теневой маски и трехэтапного процесса осаждения RGB-пленок была показана возможность изготовления полноцветного дисплея с диагональю 2,4 дюйма и шагом субпикселов 57 мкм. К достоинствам OLED на низкомолекулярном материале относится и совместимость с большинством операций производства полупроводниковых приборов. SMOLED существенно превосходят PLED по сроку службы и эффективности, но метод их изготовления не приемлем для создания дисплеев больших размеров. Поэтому сейчас SMOLED-дисплеи считаются наиболее серьезным конкурентом ЖКД, особенно в области дисплеев малых размеров. Поскольку одно из основных достоинств OLED – отсутствие подсветки, они успешно конкурируют с ЖКД при создании субпанелей (дополнительных дисплеев) мобильных телефонов типа раскладушки, популярность которых непрерывно растет. Благодаря прогрессивным методам продвижения OLED-дисплеев на рынок сегодня они используются в 90% раскладушек с субдисплеем. Ряд компаний разработали так называемые двойные или двухсторонние OLED-дисплеи. Так, исследовательский институт промышленной технологии (Industrial Technology Research Institute – ITRI) Тайваня в конце 2004 г. продемонстрировал одноцветный двойной дисплей с диагональю 3,8 дюйма и разрешением 320×240 пикселов. Разработку подобных дисплеев на основе активно-матричных OLED ведут компании RiTdisplay и AU Optronics. Безусловно, двойной OLED-дисплей зрительно более привлекателен, чем ЖКД. Появление мобильных телефонов со встроенной фотокамерой открывает новое применение OLED, на основе которых благодаря большей эффективности в сравнении с ЖКД, выполняется видеоискатель. Однако, как показывает практика, технология ЖКД развивается столь же стремительно, как и требования, предъявляемые производителями мобильных телефонов. Соревнование двух технологий продолжается.
В последнее время внимание разработчиков привлекают органические светодиоды на основе растворимого в полимере фосфоресцирующего низкомолекулярного материала. В традиционных OLED только 25% генерируемых носителей заряда участвуют в излучении света, тогда как остальные 75% носителей вызывают нагрев прибора. На основе результатов работ, проведенных учеными Принстонского университета, Университета Южной Калифорнии и компании Universal Display Corp. (UDC), удалось получить новый органический материал, в котором благодаря процессу фосфоресценции все 100% генерируемых носителей участвуют в генерации света. Наносится такой материал на подложку с помощью процесса струйной печати органическим паром. Пары органического материала пропускают через микроскопическое сопло, формирующее коллимированный пучок газа, с помощью которого и создается на подложке требуемый рис. органических элементов изображения. Достоинства этого процесса – более полное использование материалов, обеспечение лучшего разрешения и более высокая производительность в сравнении с другими методами изготовления OLED.
Фосфоресцирующие OLED (Phosphorescent OLED – PHOLED) по эффективности в четыре раза превосходят обычные органические диоды, не говоря о ЖКД, 90% излучения которых поглощается светофильтрами и другими компонентами дисплея. Световая эффективность PHOLED достигает 20 лм/Вт. Яркость активно-матричного PHOLED-дисплея с диагональю 2,2 дюйма в режиме воспроизведения видеоизображения – 200 кд/м2 при значении потребляемой мощности всего 125 мВт против 180 мВт для ЖКД аналогичный яркости.
К достоинствам PHOLED относятся возможность формирования на их основе экранов больших размеров (благодаря малой потребляемой мощности и большой светоотдаче), а также совместимость технологии с процессами формирования активных матричных структур с ТПТ на базе аморфного или поликристаллического кремния.
Помимо PHOLED-дисплеев компания UDC предлагает так называемые прозрачные органические светодиоды (Transparent OLED – TOLED), формируемые с прозрачными электродами на тонких прозрачных стеклянных или пластмассовых подложках. Светодиоды типа TOLED излучают свет верхней, нижней или обеими поверхностями. Поскольку в нерабочем режиме такие панели прозрачны на 70%, они могут монтироваться на стеклах очков, лобовом стекле автомобиля или на окнах. Кроме того, компания создала наборные OLED (Stacked OLED – SOLED), в которых красные, зеленые и синие элементы каждого пиксела располагаются по вертикали. Каждый субпиксел управляется независимо, цвет пиксела регулируется пропускаемым через каждый цветовой элемент током, шкала серого – широтно-импульсной модуляцией. Яркость устанавливается выбором соответствующего тока вертикального набора. По утверждению разработчиков, SOLED-технология позволяет в три раза увеличить разрешение дисплея и качество цветопередачи в сравнении с дисплеями на базе ЭЛТ или ЖК. Компания считает, что в будущем SOLED-панели найдут применение в дисплеях с высоким разрешением сетевого оборудования.
Интерес представляют и разработанный учеными исследовательской группы института технологии Технион (Израиль) органический полупроводниковый материал на базе полученных ими протеинов. Протеины соединяются друг с другом, образуя пептиды, пригодные для построения электронных приборов. По мнению разработчиков, в ближайшие несколько лет им удастся создать полноцветные складные дисплеи с более высоким разрешением, чем у экранов современных компьютеров.
