- •А.Н. Игнатов
- •Новосибирск 2013
- •Предисловие
- •1.1 Введение в волоконную оптику
- •1.2 Особенности оптической электроники
- •1.3 История развития оптоэлектроники
- •1.4 Современное состояние оптоэлектронной элементной базы
- •1.5 Система обозначений оптоэлектронных приборов индикации
- •1.6 Система обозначений полупроводниковых приборов и оптронов
- •Тестовые вопросы к главе 1 «Введение в оптоэлектронику»
- •2 Физические основы оптоэлектроники
- •2.1 Различие между фотометрическими и энергетическими характеристиками
- •2.2 Фотометрические характеристики оптического излучения
- •2.2.1 Функция видности и ее зависимость от длины электромагнитной волны
- •2.2.2 Телесный угол, световой поток и механический эквивалент света
- •2.2.3 Сила света, IV
- •2.2.4 Освещенность поверхности, е
- •2.2.5 Закон освещенности
- •2.2.6 Светимость излучающей поверхности, м
- •2.2.7 Яркость светящейся поверхности, l
- •Величина
- •2.2.8 Закон Ламберта
- •2.2.9 Световая экспозиция, нv
- •2.5 Колориметрические параметры
- •2.6 Когерентность оптического излучения
- •2.6.1 Монохроматическая электромагнитная волна (мэв)
- •2.6.2 Особенности излучения электромагнитных волн в ультрафиолетовом (уф), видимом и инфракрасном (ик) диапазонах
- •2.7 Квантовые переходы и вероятности излучательных переходов
- •2.7.1 Энергетические уровни и квантовые переходы
- •2.7.2 Спонтанные переходы
- •2.7.3 Вынужденные переходы
- •2.7.4 Соотношения между коэффициентами Эйнштейна
- •2.7.5 Релаксационные переходы
- •2.8 Ширина спектральной линии
- •2.9 Использование вынужденных переходов для усиления электромагнитного поля
- •2.10 Механизм генерации излучения в полупроводниках
- •2.11 Прямозонные и непрямозонные полупроводники
- •2.12 Внешний квантовый выход и потери излучения
- •2.13 Излучатели на основе гетероструктур
- •2.14 Поглощение света в твердых телах
- •2.15 Типы переходов и характеристики излучающих полупроводниковых структур.
- •2.16 Параметры оптического излучения
- •Тестовые вопросы к главе 2 «Физические основы оптоэлектроники»
- •3 Приборы некогерентного излучения
- •3.1 Источники света
- •3.1.1 Разновидности источников
- •3.2 Основные характеристики и параметры светодиодов
- •3.2.1 Параметры светодиодов
- •3.2.2 Характеристики светодиодов
- •3.2.3 Определение и оценка параметров светодиодов
- •3.2.4 Схемы возбуждения, обеспечивающие высокую световую эффективность светодиодов
- •3.2.5 Влияние температуры
- •3.2.6 Срок службы
- •3.2.7 Ограничение тока
- •3.2.8 Достоинства твердотельных излучателей
- •3.3 Конструкции светодиодов
- •3.4 Основные схемы возбуждения светодиодов
- •3.5 Выбор типа светодиода
- •3.5.1 Основные соображения для выбора типа светодиода
- •3.5.2 Памятка разработчику
- •3.6 Электрическая модель светодиода
- •3.7 Светодиоды инфракрасного излучения
- •3.8 Светодиодные источники повышенной яркости и белого света
- •Тестовые вопросы к главе 3 «Источники некогерентного излучения»
- •4 Приборы когерентного излучения
- •4.1 Физические основы усиления и генерации лазерного излучения
- •4.2 Структурная схема лазера
- •4.3 Лазеры на основе кристаллических диэлектриков
- •4.4 Жидкостные лазеры
- •4.5 Газовые лазеры
- •4.6 Устройство и принцип действия полупроводникового инжекционного моно лазера
- •4.7 Устройство и принцип действия полупроводниковых лазеров с гетероструктурами
- •4.8 Волоконно-оптические усилители и лазеры
- •4.8.1 Волоконные усилители
- •4.8.2 Волоконные лазеры
- •4.8.3 Волоконные лазеры на основе вынужденного комбинационного рассеяния
- •4.9 Светоизлучающие диоды для волоконно-оптических систем
- •4.10 Сравнительная характеристика лазеров и светодиодов
- •4.10.1 Параметры отечественных полупроводниковых лазеров и оптических модулей
- •4.11. Квантовые эффекты в полупроводниках
- •4.12. Фотонные нанокристаллы.
- •4.13. Наноэлектронные лазеры
- •4.13.1. Наноэлектронные лазеры с горизонтальными резонаторами
- •4.13.2. Наноэлектронные лазеры с вертикальными резонаторами
- •4.14.1. Органические светодиоды
- •4.14.2. Пассивно-матричные oled
- •4.14.3. Активно-матричные oled
- •4.14.4. Технологии получения органических светодиодов
- •Тестовые вопросы к главе 4 «Приборы когерентного излучения»
- •5 Полупроводниковые фотоприемные приборы
- •5.1 Принцип работы фотоприемных приборов
- •5.2 Характеристики, параметры и модели фотоприемников
- •5.2.1 Параметры фотоприемников
- •5.2.2 Характеристики фотоприемников
- •5.2.3 Параметры фотоприемника как элемента оптопары
- •5.2.4 Электрические модели фотоприемников
- •5.3 Фотодиоды на основе p-n – перехода
- •5.4 Фотодиоды с p–I–n структурой
- •5.5 Фотодиоды Шоттки
- •5.6 Фотодиоды с гетероструктурой
- •5.7 Лавинные фотодиоды
- •5.8 Фототранзисторы
- •5.9 Фототиристоры
- •5.10 Фоторезисторы
- •5.11 Основные характеристики и параметры фоторезистора
- •5.12 Пзс приемные фотоприборы
- •5.13 Фотодиодные сбис на основе моп – транзисторов
- •5.14 Пиротехнические фотоприемники
- •5.15. Фотоприемные наноэлектронные приборы
- •5.15.1. Фотоприемники на квантовых ямах
- •5.15.2. Фотоприемники на основе квантовых точек
- •Тестовые вопросы к главе 5 «Полупроводниковые фотоприемные Приборы»
- •6 Оптроны
- •6.1 Устройство и принцип действия оптронов
- •6.2 Структурная схема оптрона
- •6.3 Классификация и параметры оптронов
- •6.4 Электрическая модель оптрона
- •6.5 Резисторные оптопары
- •6.6 Диодные оптопары
- •6.7 Транзисторные оптопары
- •6.8 Тиристорные оптопары
- •Тестовые вопросы к главе 6 «Оптроны»
- •7 Индикаторные приборы
- •7.1 Жидкокристаллические индикаторы
- •7.1.1 Основы теории
- •7.1.2 Ячейки на основе эффекта динамического рассеяния (др – ячейки)
- •7.1.3 Ячейки на основе твист-эффекта
- •7.1.4 Основные типы и параметры
- •7.1.5 Схемы включения жидкокристаллических индикаторов
- •7.1.6 Схемы управления многоразрядными индикаторами
- •7.2 Электролюминесцентные индикаторы
- •7.2.1 Устройство и принцип действия
- •7.2.2 Типы и параметры
- •7.2.3 Схемы включения электролюминесцентных индикаторов
- •7.3 Плазменные панели и устройства на их основе
- •7.4 Электрохромные индикаторы
- •7.5. Отображение информации индикаторными приборами
- •Тестовые вопросы к главе 7 «Индикаторные приборы»
- •8 Применение оптоэлектроннх приборов
- •8.1 Устройство и принцип действия оптоэлектронных генераторов
- •8.1.1 Блокинг - генератор
- •8.1.2 Генератор линейно изменяющегося напряжения
- •8.1.3 Генератор с мостом Вина
- •8.2 Применение оптоэлектронных приборов в аналоговых ключах и регуляторах
- •8.3 Применение оптронов для выполнения логических функций
- •8.4 Применение оптронов как аналогов электрорадиокомпонентов
- •8.5 Устройство и принцип действия оптоэлектронных усилителей
- •8.6 Устройство и принцип действия оптоэлектронных цифровых ключей
- •8.7 Применение оптоэлектронных приборов для измерения высоких напряжений и управления устройствами большой мощности
- •8.8 Устройство и принцип действия оптических устройств записи информации
- •8.9 Принцип лазерно-оптического считывания информации
- •8.10 Принципы цифровой оптической записи и воспроизведения информации с компакт дисков
- •8.10.1 Устройство компакт-диска
- •8.10.2 Запись на компакт диски
- •8.10.3 Отличия cd-r/cd-rw дисков от штампованных
- •8.10.4 Маркировка дисков
- •8.10.5 Надежность дисков cd-r/rw в сравнении со штампованными
- •8.10.6 Изготовление и тиражирование компакт-дисков
- •8.10.7 Воспроизведение компакт-диска
- •8.10.8 Устройство накопителей на cd-rom
- •8.10.9 Представление и параметры звукового сигнала на cd
- •8.10.10 Джиттер
- •8.11 Оптоэлектронные сенсорные системы взаимодействия человека с электронной техникой.
- •8.11 Лазерный микропроектор со спиральной разверткой для мобильных устройств
- •Тестовые вопросы к главе 8 «Применение оптоэлектронных приборов»
- •9. Волоконно-оптические системы связи
- •9.1. Общие сведения
- •9.2. Классификация волоконно-оптических систем распределения
- •9.3. Волоконно-оптические системы распределения
- •9.4. Оптические передатчики
- •9.5 Приемники волоконно-оптических систем связи
- •9.5.1 Приемные оптоэлектронные модули
- •9.6. Цифровые волоконно-оптические системы связи
- •9.7. Аналоговые волоконно-оптические системы связи
- •9.8 Умные соединители на основе смартлинков
- •9.8.1 Технические решения смартлинков
- •9.8.2 Самоформирующиеся компьютеры
- •9.8.3 Оптоволоконные нейроинтерфейсы
- •9.9 Волоконно оптические технологии для сетей доступа
- •9.9.1 Общие сведения
- •9.9.2 Тенденции мирового развития сетей доступа
- •9.9.3 Технологии оптических сетей доступа
- •9.9.4 Категории оптических сетей доступа
- •9.9.5 Волокно до бизнеса – FttBusiness
- •9.9.6 Волокно до дома – ftth
- •9.9.7 Волокно до многоквартирного дома – fттb
- •9.9.8 Волокно до сельского района
- •9.10 Медиоконверторы и их применение в оптических системах связи
- •9.10.1 Общие сведения
- •9.10.2. Основные технические требования, предъявляемые к оборудованию
- •9.10.3. Классификация медиаконвертеров по критерию управляемости
- •9.10.4. Конструктивное исполнение
- •9.10.5. Основные параметры медиаконвертеров
- •9.10.6. Система управления
- •9.10.7. Устройство и применение медиоконвертора rs-485
- •Тестовые вопросы к главе 9 «Волоконно-оптические системы связи»
- •Приложение п1
- •Приложение п2
- •Приложение п3
- •Приложение п4 Перечень принятых сокращений
- •Список цитированной литературы
4.13. Наноэлектронные лазеры
4.13.1. Наноэлектронные лазеры с горизонтальными резонаторами
Как хорошо известно, для работы любого лазера необходимо обеспечить выполнение двух основных условий. Во-первых, нужно создать состояние инверсии заселенности энергетических уровней, т.е. необходимо обеспечить, чтобы на более высоком уровне находилось больше электронов, чем на низком. В состоянии теплового равновесия ситуация с распределением электронов по уровням прямо противоположная. Во-вторых, каждому лазеру необходим оптический резонатор, или система зеркал, которая запирает электромагнитное излучение в рабочем объеме и обеспечивает механизм вынужденной рекомбинации электронов при их переходах из зоны проводимости в валентную зону. При вынужденной рекомбинации генерируется фотон, имеющий ту же частоту, направление распространения и фазу, что и фотон, индуцирующий рекомбинацию. При спонтанной рекомбинации, наоборот, генерируются фотоны, имеющие произвольные направления движения и фазы.
В настоящее время самым распространенным типом полупроводникового лазера является лазер на квантовой яме в виде двойной гетероструктуры, для которой в соответствие с рис. 4.31. активная область представляет собой тонкий слой узкозонного полупроводника, «зажатого» между двумя широкозонными.
При достаточно малой толщине активной области она начинает вести себя как квантовая яма, и квантование энергетического спектра в ней существенно меняет свойства лазеров. К широкозонным областям присоединяются металлические контакты, через которые электроны могут непрерывно поступать в рабочую область.
а) б)
Рис. 4.31. Лазер на квантовой яме:
а) двойная гетероструктура; б) энергетическая диаграмма
Работа лазера происходит следующим образом. Из одного контакта (широкозонного полупроводника) электроны поступают в рабочую зону, создавая тем самым в ней инверсную заселенность. Далее, переходя из зоны проводимости в валентную зону, они излучают кванты электромагнитного излучения, частота которого определяется условием
ћω = Еg+ EC1 + ЕC2. (4.14)
Для того чтобы сконцентрировать генерируемое излучение в центральной активной области прибора показатель преломления внутреннего слоя подбирают так, чтобы он был больше, чем для внешнего. Такое соотношение можно получить, например, в системе материалов GaAs/InGaAs. В этом случае внутренняя область становится подобной волоконно-оптическому волноводу, на границах которого нанесены зеркала, формирующие резонатор.
Лазеры на квантовых ямах обладают рядом преимуществ по сравнению с обычными полупроводниковыми лазерами. Прежде всего, эти приборы можно перестраивать, управляя параметрами энергетического спектра за счет изменения толщины рабочей области. Так, при уменьшении размеров ямы минимальные энергии электронов EC1 и ЕC2 увеличиваются, и тогда согласно (4.14), увеличивается и частота излучения, которое генерируется лазерами. Подбирая ширину квантовой ямы можно добиться того, что затухание волны в оптической линии связи станет минимальным.
Другое преимущество заключается в том, что в двумерном электронном газе квантовой ямы легче создать инверсию заселенности, что связано с иным распределением плотностей состояний у краев зон. Если в массивном полупроводнике в непосредственной близости от края зоны эта величина мала, то в квантово-размерной системе она не убывает вблизи края, оставаясь постоянной. Поэтому лазеры на квантовых ямах очень экономны, они питаются меньшим током и дают больше света на единицу потребляемой мощности. До 60% электрической мощности ими преобразуется в свет.
В квантовых точках энергетический спектр меняется еще более радикально, чем в квантовых ямах. Плотность состояний для них имеет крутой -образный вид. Тем самым в квантовых точках отсутствуют состояния, которые не принимают участия в усилении оптического излучения, но содержат электроны. Это уменьшает потери энергии и, как следствие, уменьшает пороговый ток – важнейший параметр инжекционных лазеров, который равен минимальному току, пропускаемому через прибор обеспечивающему получение лазерного излучения (накачку). Для любых систем лазеров величину порогового тока желательно делать как можно меньшей. Предельная величина этого тока при комнатной температуре может быть снижена до 15 А/см2, в то время как в лазерах на квантовых ямах эта величина имеет порядок около 30 А/см2.
